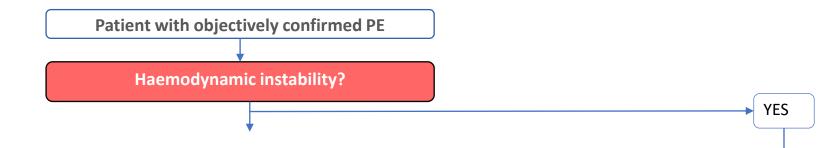


# Contemporary management and outcomes of patients with high-risk PE

**Olivier Sanchez** 


Université Paris Cité Service de Pneumologie et Soins Intensifs. HEGP Centre de Compétences Maladies Rares Pulmonaires INSERM UMR-S 1140 F-CRIN INNOVTE Network

□ I have the following real or perceived conflicts of interest that relate to this presentation:

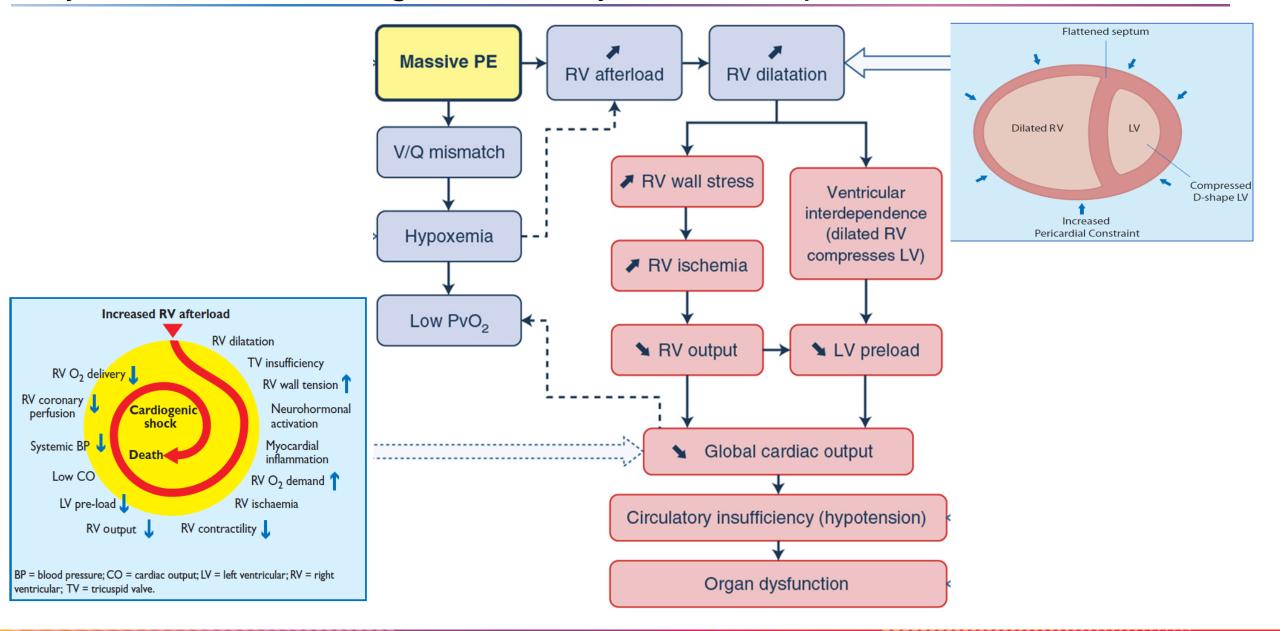
| Affiliation / Financial interest                | Commercial Company                                                                        |
|-------------------------------------------------|-------------------------------------------------------------------------------------------|
| Grants/research support:                        | Bayer, MSD, BMS, Daiichi-Sankyo                                                           |
| Honoraria or consultation fees:                 | Bayer, MSD, BMS, PFIZER, SANOFI-AVENTIS, Boston Scientifics, INARI, Viatris, GSK, Janssen |
| Participation in a company sponsored bureau:    | No                                                                                        |
| Stock shareholder:                              | No                                                                                        |
| Spouse / partner:                               | No                                                                                        |
| Other support / potential conflict of interest: | No                                                                                        |

# Risk stratification based on early mortality risk:

## 2019 ESC / ERS guidelines



HIGH


| (1) Cardiac arrest       | (2) Obstructive shock <sup>68-70</sup>                 | (3) Persistent hypotension                          |
|--------------------------|--------------------------------------------------------|-----------------------------------------------------|
| Need for cardiopulmonary | Systolic BP < 90 mmHg or vasopressors required         | Systolic BP < 90 mmHg or systolic BP drop $\geq$ 40 |
| resuscitation            | to achieve a BP $\geq$ 90 mmHg despite adequate        | mmHg, lasting longer than 15 min and not caused by  |
|                          | filling status                                         | new-onset arrhythmia, hypovolaemia, or sepsis       |
|                          | And                                                    |                                                     |
|                          | End-organ hypoperfusion (altered mental status; cold,  |                                                     |
|                          | clammy skin; oliguria/anuria; increased serum lactate) |                                                     |
|                          |                                                        |                                                     |

#### • These patients are rares:

- ICOPER (1995-1996)<sup>1</sup>: 4,2% (103/2454)
- RIETE (2001-2016)<sup>2</sup> : **3,5%** (1207/34380)
- German healthcare database (2005-2015) <sup>3</sup>: **3,5%** (30939/885806)
- High mortality rate: 30-40%; 60-70% if cardiac arrest

Konstantinides SV et al, Eur Heart J 2019: doi:10.1093/eurheartj/ehz405

# Key factors contributing to haemodynamic collapse in acute PE



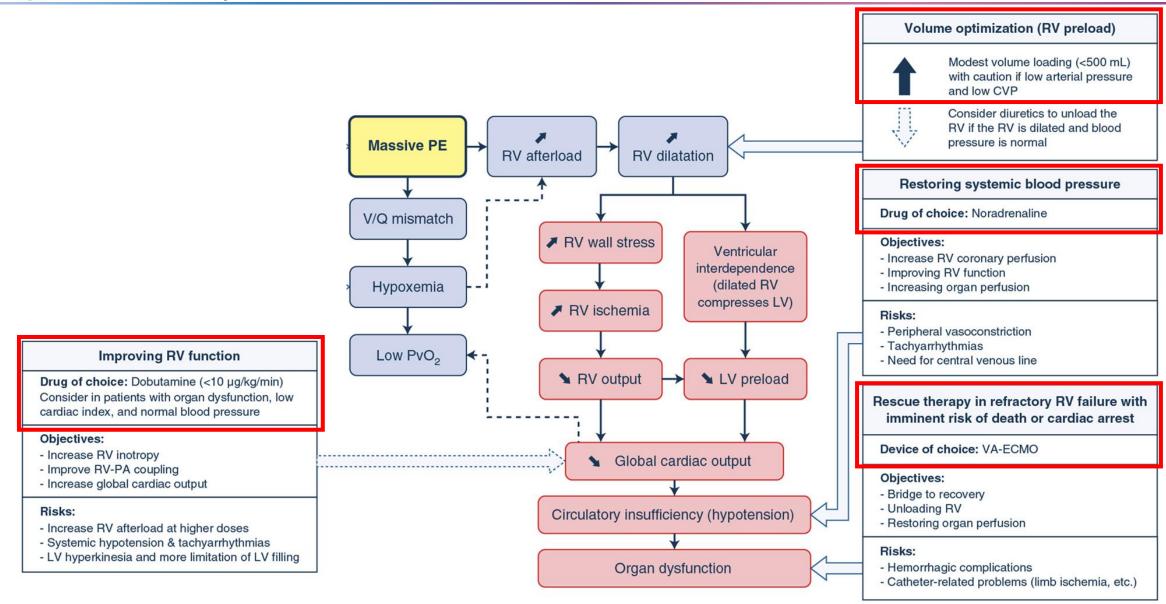
www.paris-ecostcs.com

Millington et al ICM 2023

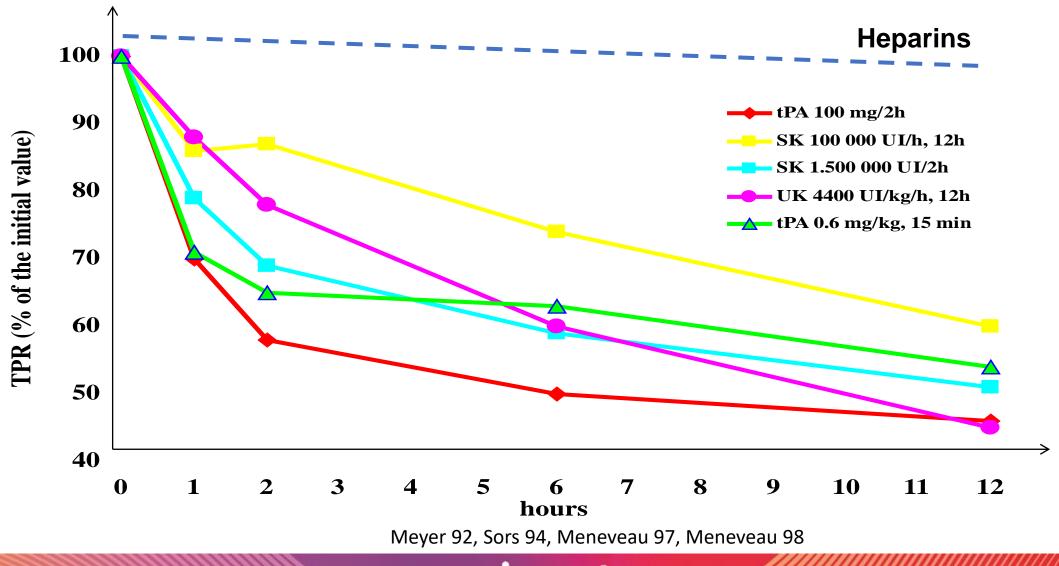
# Rapid haemodynamic stabilisation

- Improve RV function
- $\rightarrow$  Volume expansion
- $\rightarrow$  Positive inotropics agents
- Increase systolic blood pressure and RV coronary perfusion
- $\rightarrow$  vasopressors

# Restoration of pulmonary blood flow : decrease RV afterload


 $\rightarrow$  Primary reperfusion treatment

Fibrinolysis or embolectomy (surgical/per-cutaneous)


 $\rightarrow$  Avoid recurrent PE

Anticoagulant treatment: UFH / LMWH

# Rapid haemodynamic stabilisation



# Decrease RV afterload: systemic fibrinolysis



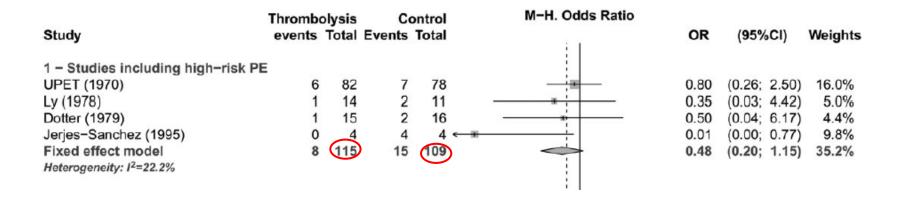
www.paris-ecostcs.com

## Systemic thrombolytic therapy for acute pulmonary embolism: a systematic review and meta-analysis

European Heart Journal (2015) 36, 605-614

#### Christophe Marti<sup>1\*</sup>, Gregor John<sup>1</sup>, Stavros Konstantinides<sup>2</sup>, Christophe Combescure<sup>3</sup>, Olivier Sanchez<sup>4</sup>, Mareike Lankeit<sup>2</sup>, Guy Meyer<sup>4</sup>, and Arnaud Perrier<sup>1</sup>

## **15 RCT**


• 4 included (not exclusively) high-risk PE

#### 2057 patients

All studies reported early all-cause mortality and primary endpoint was based on clinical events in 3 RCT including 1344 patients

| First author<br>and year of<br>publication | Number<br>of patients | Eligibility      | Severity<br>criteria                                      | High-risk Pl<br>included | Thrombolysis                                 | Control            | Age limit<br>(years) | Follow-up <sup>a</sup>  | Invasive<br>angiography | Primary<br>endpoint                      |
|--------------------------------------------|-----------------------|------------------|-----------------------------------------------------------|--------------------------|----------------------------------------------|--------------------|----------------------|-------------------------|-------------------------|------------------------------------------|
| Becattini (2010)                           | 58                    | Acute PE<10 days | RVD                                                       | No                       | Tenecteplase 30–50 mg<br>plus heparin        | Heparin            | 85                   | 30 days                 | No                      | 24 h RVD <sup>b</sup>                    |
| Dalla Volta (1992)                         | 36                    | Acute PE<10 days | Miller score<br>>11                                       | No                       | Alteplase 100 mg/2 h plus<br>heparin         | Heparin            | 80                   | 30 days                 | 100%                    | Pulmonary<br>perfusion <sup>c</sup>      |
| Dotter (1979)                              | 31                    | Acute PE         | No                                                        | Yes                      | Streptokinase 2–11<br>MIU 18–72 h            | Heparin            | No                   | 7 days                  | 100%                    | Pulmonary<br>perfusion <sup>c</sup>      |
| Fasullo (2011)                             | 72                    | Acute PE<6 h     | RVD                                                       | No                       | Alteplase 100 mg/2 h plus<br>heparin         | Heparin            | 75                   | 10 days                 | No                      | RVD <sup>b</sup>                         |
| Goldhaber (1993)                           | 101                   | Acute PE<14 days | No                                                        | No                       | Alteplase 100 mg/2 h plus<br>heparin         | Heparin            | No                   | 14 days                 | 21%                     | RVD <sup>b</sup>                         |
| Jerjes-Sanchez (1995)                      | 8                     | Acute PE<14 days | Massive                                                   | Yes                      | Streptokinase 1.5 MIU/2 h                    | Heparin            | No                   | In-hospital             | No                      | RVD, pulmonary<br>perfusion <sup>d</sup> |
| Kline (TOPCOAT)<br>(2013)                  | 83                    | Acute PE         | RVD or<br>hypoxaemia                                      | No                       | Tenecteplase 30–50 mg/2 h<br>plus enoxaparin | LMWH               | No                   | 5 days                  | NA                      | Composite clinical outcome               |
| Konstantinides<br>(MAPPET) (2002)          | 256                   | Acute PE<4 days  | RVD or pHTA                                               | No                       | Alteplase 100 mg/2 h plus<br>heparin         | Heparin            | 80                   | 30 days/<br>in-hospital | 16%                     | Death or treatment escalation            |
| Levine (1990)                              | 58                    | Acute PE<14 days | No                                                        | No                       | Alteplase 0.6 mg/kg/2 min                    | Heparin            | No                   | 10 days                 | 67%                     | Pulmonary<br>perfusion <sup>d</sup>      |
| Ly (1978)                                  | 20                    | Acute PE<5 days  | >1 lobe <sup>d</sup>                                      | Yes                      | Streptokinase 72 h                           | Heparin            | 70                   | 10 days                 | 100%                    | Pulmonary<br>perfusion <sup>c</sup>      |
| Marini (1988)                              | 30                    | Acute PE<7 days  | >9 segments <sup>d</sup>                                  | No                       | Urokinase 2.4–3.3 MIU<br>/12–72 h            | Heparin            | 72                   | 7 days                  | 100%                    | Pulmonary<br>perfusion <sup>d</sup>      |
| Meyer (PEITHO)<br>(2014)                   | 1005                  | Acute PE<15 days | RVD and<br>elevated<br>troponin                           | No                       | Tenecteplase 30–50 mg<br>plus heparin        | Heparin            | No                   | 7 days                  | 1.4%                    | Death or<br>haemodynamic<br>collapse     |
| Sharifi (2013)                             | 121                   | Acute PE<10 days | $\geq 2  \text{lobes}^{d}$                                | No                       | Alteplase 50 mg/<br>2 h + heparin            | Heparin or<br>LMWH | No                   | In-hospital             | No                      | Pulmonary<br>hypertension <sup>b</sup>   |
| Stein (PIOPED) (1990)                      | 13                    | Acute PE<7 days  | $\geq 1 \text{ lobe or } \geq 2$<br>segments <sup>d</sup> | No                       | Alteplase 40–80 mg/<br>40–90 min + heparin   | Heparin            | No                   | 7 days                  | 100%                    | Pulmonary<br>perfusionc                  |
| UPET (1970)                                | 160                   | Acute PE<5 days  | No                                                        | Yes                      | Urokinase 12 h                               | Heparin            | No                   | 14 days                 | 100%                    | Pulmonary<br>perfusion <sup>c,d</sup>    |

## Thrombolysis vs anticoagulant alone in High risk PE



|                                  | Studies including <sup>a</sup><br>High-risk PE |
|----------------------------------|------------------------------------------------|
|                                  | OR (95% CI)                                    |
| Mortality                        | 0.48 (0.20 to 1.15)                            |
| PE mortality                     | 0.15 (0.03 to 0.78)                            |
| Death or treatment<br>escalation | 0.18 (0.04 to 0.79)                            |
| PE recurrence                    | 0.97 (0.31 to 2.98)                            |

|                            | www.paris-ecc | osta   | s.cor  | n      |           |  |
|----------------------------|---------------|--------|--------|--------|-----------|--|
|                            | Favours       | thromb | olysis | Favour | s control |  |
| Eur Heart J 2015;36:605-14 | 0.01          | 0.1    | 0.512  | 10     | 65        |  |
|                            |               |        |        |        |           |  |

# Systemic thrombolytic therapy for acute pulmonary embolism: a systematic review and meta-analysis Eur Heart J 2015;36:605-14

Christophe Marti<sup>1\*</sup>, Gregor John<sup>1</sup>, Stavros Konstantinides<sup>2</sup>, Christophe Combescure<sup>3</sup>, Olivier Sanchez<sup>4</sup>, Mareike Lankeit<sup>2</sup>, Guy Meyer<sup>4</sup>, and Arnaud Perrier<sup>1</sup>

#### Safety

#### **Thrombolysis**

Major bleeding: 9.9% Fatal or intracranial haemorrhage: 1.7%

|                                                     | All studies                                |                 |         | All studies Alteplase |                                             |                           | Alteplase    | Tenecteplase | Other<br>thrombolytics | Group<br>difference |  |
|-----------------------------------------------------|--------------------------------------------|-----------------|---------|-----------------------|---------------------------------------------|---------------------------|--------------|--------------|------------------------|---------------------|--|
|                                                     | OR (95% CI)                                | P-value         | l² (%)  | OR (95% CI)           | OR (95% CI)                                 | OR (95% CI)               | P-value      |              |                        |                     |  |
| Major bleeding<br>Fatal/intracranial<br>haemorrhage | 2.91 (1.95 to 4.36)<br>3.18 (1.25 to 8.11) | <0.001<br>0.008 | 25<br>0 |                       | 5.02 (2.72 to 9.26)<br>7.32 (1.64 to 32.63) | 2.16 (1.03 to 4.54)<br>NA | 0.02<br>0.07 |              |                        |                     |  |

# Approved regimen and contraindications of thrombolysis in PE: ESC 2019

| Streptokinase | 250 000 IU as a loading dose over 30 minutes, followed by 100 000 IU/h over 12–24 hours       |
|---------------|-----------------------------------------------------------------------------------------------|
|               | Accelerated regimen: 1.5 million IU over 2 hours                                              |
| Urokinase     | 4400 IU/kg as a loading dose over 10 min, followed<br>by 4400 IU/kg per hour over 12–24 hours |
|               | Accelerated regimen: 3 million IU over 2 hours                                                |
| rtPA          | 100 mg over 2 hours; or                                                                       |
|               | 0.6 mg/kg over 15 minutes (maximum dose 50 mg)                                                |

#### Absolute contraindications:<sup>a</sup>

- Haemorrhagic stroke or stroke of unknown origin at any time
- Ischaemic stroke in the preceding 6 months
- Central nervous system damage or neoplasms
- Recent major trauma/surgery/head injury in the preceding 3 weeks
- Gastrointestinal bleeding within the last month
- Known bleeding risk

#### **Relative contraindications**

- Transient ischaemic attack in the preceding 6 months
- Oral anticoagulant therapy
- Pregnancy, or within one week postpartum
- Non-compressible puncture site
- Traumatic resuscitation
- Refractory hypertension (systolic blood pressure >180 mm Hg)
- Advanced liver disease
- Infective endocarditis
- Active peptic ulcer

Konstantinides SV et al, Eur Heart J 2019: doi:10.1093/eurheartj/ehz405

Extracorporeal Membrane Oxygenation (ECMO)

Surgical thrombectomy

Percutaneous catheter directed thrombectomy +/- local fibrinolysis

For patients in whom thrombolysis has failed or is contraindicated

# $\approx$ 3% of high risk PE

Multidisciplinary discussion is recommended ++++

• PE Response Team (PERT): interventionalist, cardiac surgeon, pulmonary / critical care medicine

## Management of Unsuccessful Thrombolysis in Acute Massive Pulmonary Embolism\*

Nicolas Meneveau, MD, PhD; Marie-France Séronde, MD; Marie-Cécile Blonde, MD; Pierre Legalery, MD; Katy Didier-Petit, MD; Florent Briand, MD; Fiona Caulfield, MSc; François Schiele, MD, PhD; Yvette Bernard, MD; and Jean-Pierre Bassand, MD

(CHEST 2006; 129:1043–1050)

January 1995 – january 2005

488 patients underwent thrombolysis for high-risk PE

Unsuccessful thrombolysis

- Persistent clinical instability (shock) AND residual echocardiographic RV dysfunction
- Within 36h after thrombolysis
- 40 patients (<u>8.2%</u>)

Surgical embolectomy (n=14) or repeat thrombolysis (n=26) at the discretion of the treating physician

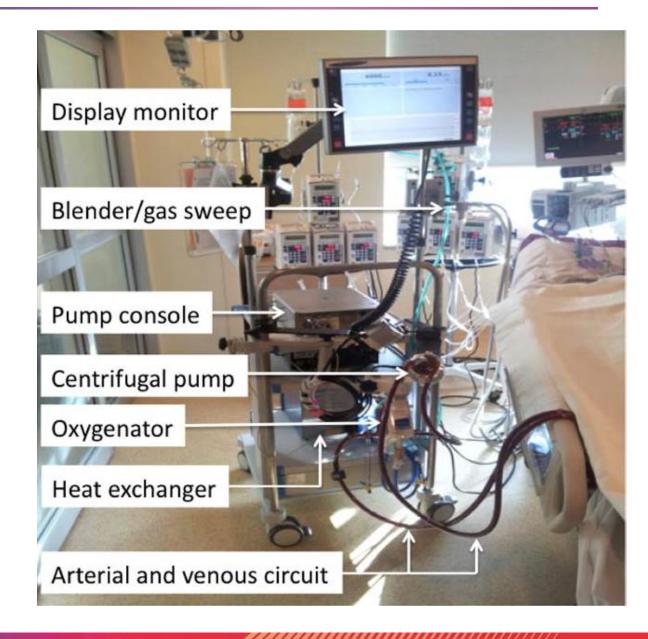
## Management of Unsuccessful Thrombolysis in Acute Massive Pulmonary Embolism\*

#### (CHEST 2006; 129:1043-1050)

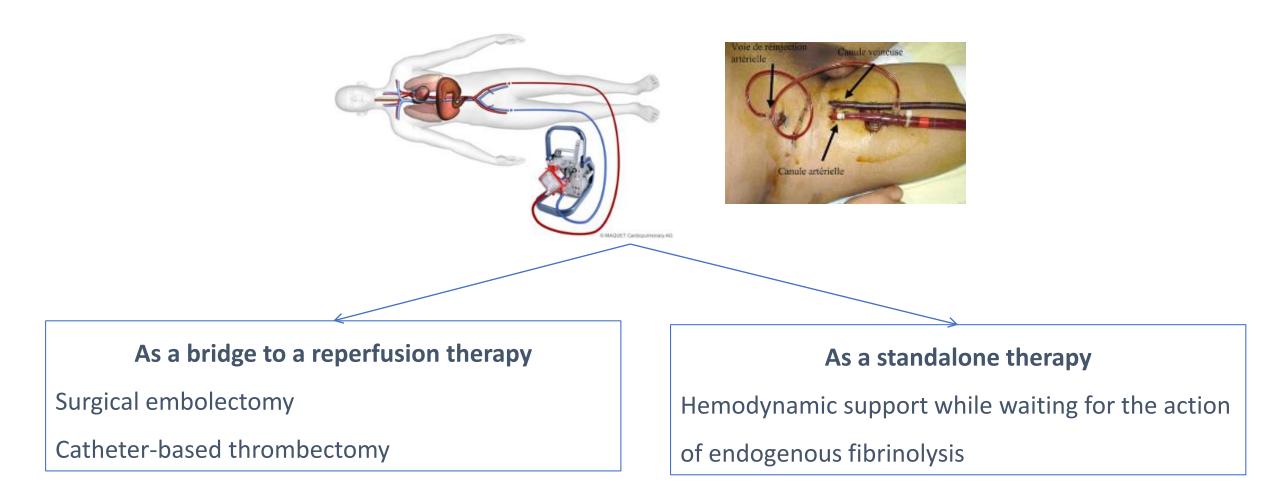
Nicolas Meneveau, MD, PhD; Marie-France Séronde, MD; Marie-Cécile Blonde, MD; Pierre Legalery, MD; Katy Didier-Petit, MD; Florent Briand, MD; Fiona Caulfield, MSc; François Schiele, MD, PhD; Yvette Bernard, MD; and Jean-Pierre Bassand, MD

| Variables                         | Rescue Embolectomy $(n = 14)$ | Repeat Thrombolysis $(n = 26)$ | OR   | 95% CI       | p Value |
|-----------------------------------|-------------------------------|--------------------------------|------|--------------|---------|
| Death                             | 1 (7)                         | 10 (38)                        | 0.13 | 0.003-1.12   | 0.07    |
| PE related-death                  | 1 (7)                         | 6 (23)                         | 0.26 | 0.01 - 2.68  | 0.39    |
| Recurrent PE                      | 0                             | 3 (11.5)                       |      |              |         |
| Refractory shock                  | 1 (7)                         | 3 (11.5)                       |      |              |         |
| Bleeding complications            | 2(14)                         | 6 (23)                         | 0.56 | 0.05-3.86    | 0.82    |
| Major bleeding episodes           | 2 (14) [0 fatal]              | 4 (15) [4 fatal]               |      |              |         |
| Intracranial hemorrhage           | Ū                             | 1(4)                           |      |              |         |
| Recurrent PE (fatal and nonfatal) | 0                             | 9 (35)                         | 0.12 | 0-0.87       | 0.015   |
| Uneventful evolution              | 11 (79)                       | 8 (31)                         | 8.25 | 1.49 - 51.71 | 0.004   |

\*Values are given as No. (%), unless otherwise indicated.


Rescue surgical embolectomy led to a better in-hospital course as compared to repeat thrombolysis

=> transfer the patients who do not respond to thrombolysis in a tertiary surgical cardiac center


#### **Role for VA-ECMO ???**

## Lower RV overload

- Improve hemodynamic status
- Restore tissue oxygenation
- Rapidly efficacious
- Indicated in case of severe and refractory shock with or without multiple organ failure
- Requires a specific and trained team +++



# 2 strategies for its use in high-risk PE



Optimal reperfusion strategy in acute high-risk pulmonary embolism requiring extracorporeal membrane oxygenation support: a systematic review and meta-analysis Chopard et al. Eur Respir J 2022

17 studies (327 PE patients) comparing mechanical embolectomy and other strategies (including systemic, catheter-directed thrombolysis, or ECMO as stand-alone therapy) with regard to mortality and bleeding outcomes

# Mortality rate: 26.4% (mechanical reperfusion) vs 42.8% (other strategies)

- Mechanical reperfusion vs other strategies: OR 0.43 (95%CI, 0.23-0.997); p = 0.009; I2 = 35.2%
- Surgical embolectomy vs thrombolysis: OR 0.36 (95% CI, 0.18-0.73; p = 0.009; I2 = 32.9%

# Bleeding rate: 24.5% (mechanical reperfusion) vs 19.6% (other strategies)

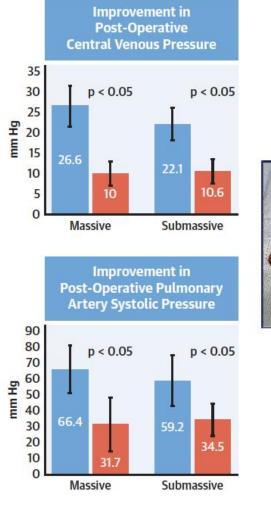
• OR 1.26; 95% CI, 0.54-2.92; I2 = 7.7%

Mechanical reperfusion, notably by surgical embolectomy, yields favorable results regardless of the timing of ECMO implantation in the reperfusion timeline, independent of thrombolysis administration or cardiac arrest presentation

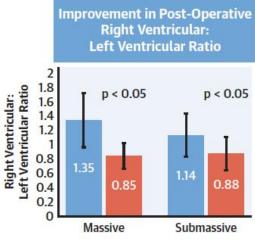
| Recommendations                                   | Class <sup>b</sup> | Level <sup>c</sup> |
|---------------------------------------------------|--------------------|--------------------|
| ECMO may be considered, in combination with       |                    |                    |
| surgical embolectomy or catheter-directed treat-  | ПЬ                 | C                  |
| ment, in patients with PE and refractory circula- | IID                | C                  |
| tory collapse or cardiac arrest. <sup>d 252</sup> |                    |                    |

Konstantinides SV et al, Eur Heart J 2019: doi:10.1093/eurheartj/ehz405

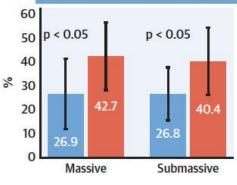
Retrospective cohorts


High mortality rates

The unsatisfactory surgical results were often related to the compromised clinical status of the patients, especially those who had already undergone thrombolysis and entered the operation room with advanced cardiogenic shock in need of cardiopulmonary resuscitation.


| Period    | Death n/N | Death % |
|-----------|-----------|---------|
| 1968-1989 | 184/526   | 35%     |
| 1990-1999 | 188/627   | 30%     |
| 2000-2008 | 41/215    | 19%     |

Samoukovic G. et al. Interactive Cardiovasc Thorac Surg 2010; 11: 265–270 Kalra et al. Ann Thorac Surg 2017;103:982-90


# Surgical embolectomy







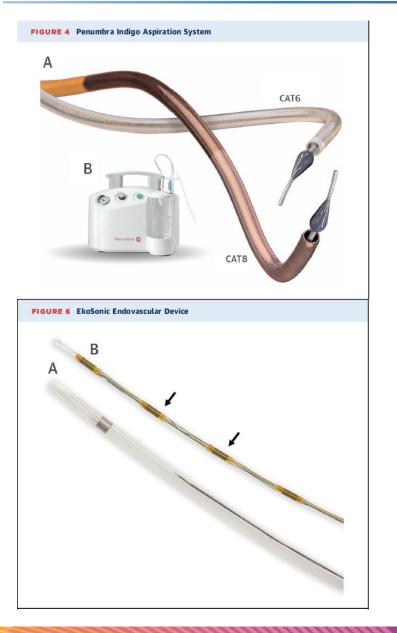
Improvement in Post-Operative Right Ventricular Fractional Area Change

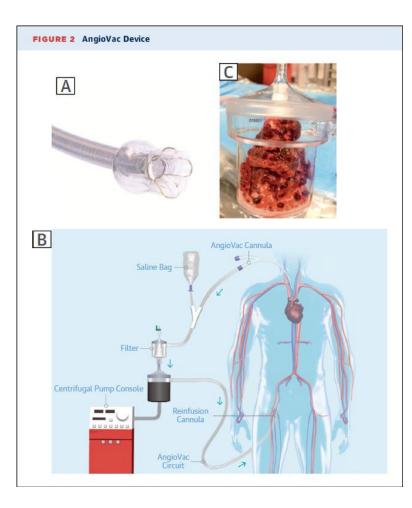


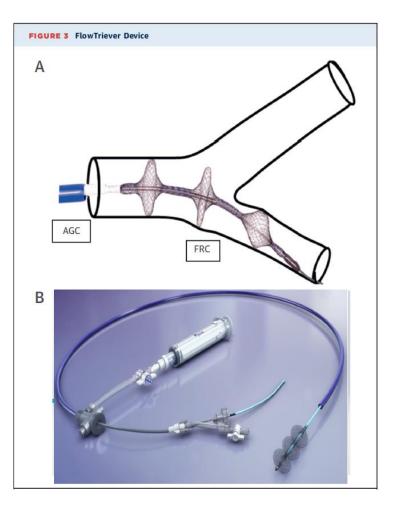
Single center retrospective single center study

#### 2005-2019

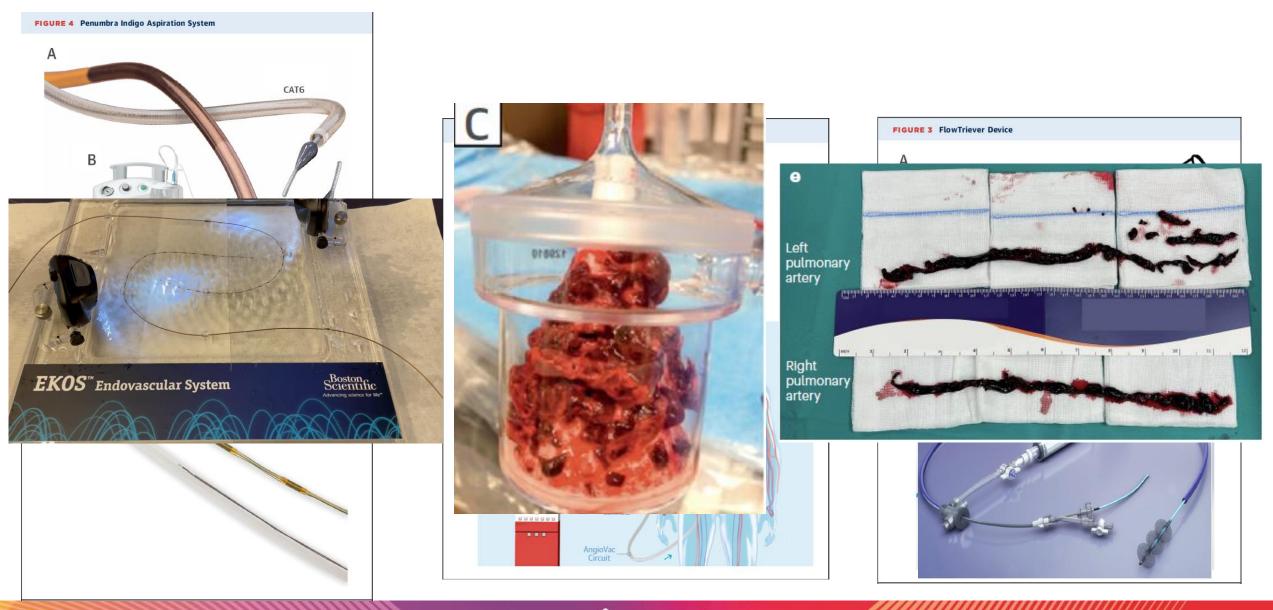
136 patients who received surgical management


- 44 high-risk PE (shock)
- 92 intermediate high-risk PE


|                                                                             | All<br>(N = 136)    | SMPE<br>(n = 92 [67.6%]) | MPE<br>(n = 44 [32.4%]) | p Valu |  |  |
|-----------------------------------------------------------------------------|---------------------|--------------------------|-------------------------|--------|--|--|
| Mortality                                                                   | 6 (4.4)             | 1 (1.1)                  | 5 (11.6)                | 0.015  |  |  |
| TABLE 7 In-Hospital Morbidity and Mortality Stratified by Pre-Operative CPR |                     |                          |                         |        |  |  |
|                                                                             | <b>CPR (</b> n = 19 | [14.0%]) No (            | CPR (n = 117 [86%])     | p Valu |  |  |
| Mortality                                                                   | 4 (21               | 11)                      | 2 (1.7)                 | 0.0    |  |  |


Pre-Operative Post-Operative

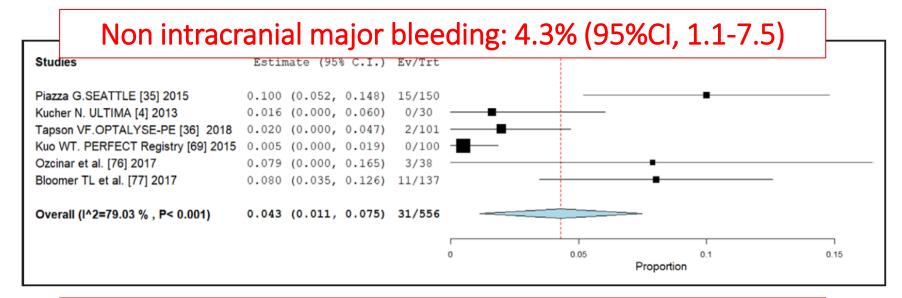
Goldberg, J.B. et al. J Am Coll Cardiol. 2020;76(8):903-11.


# Catheter-directed treatment options in PE

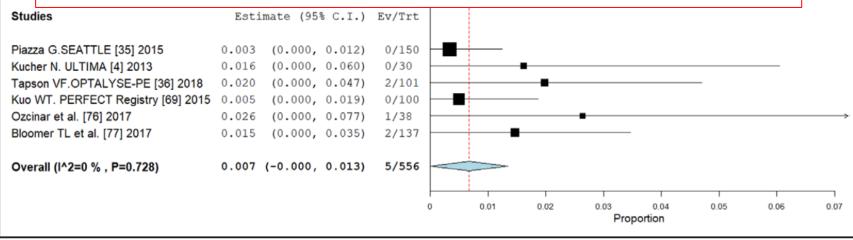







# Catheter-directed treatment in PE: impressive images of clot removal...




# Catheter-directed treatment in PE: registries and RCT

| Study, year        | Device            | Comparator      | Patients n | Inclusion<br>criteria     | Intermediate<br>high-risk PE | High-<br>risk PE | Primary<br>outcome                                             |
|--------------------|-------------------|-----------------|------------|---------------------------|------------------------------|------------------|----------------------------------------------------------------|
| SEATTLE 2, 2015    | USAT (EKOS)       | No              | 150        | RV/LV > 0.9               | 79%                          | 21%              | RV/LV at H48                                                   |
| FLARE, 2019        | FlowTriever       | No              | 106        | RV/LV > 0.9               | 56%                          | 0%               | RV/LV at H48                                                   |
| FLASH, 2023        | FlowTriever       | No              | 800        | RV/LV > 0.9               | 77%                          | 8%               | Device related death,<br>MB, intra-procedural<br>adverse event |
| EXTRACT-PE, 2021   | Indigo aspiration | No              | 119        | RV/LV > 0.9               | 71%                          | 0%               | RV/LV at H48                                                   |
| ULTIMA, 2014       | USAT (EKOS)       | Anticoagulant   | 59         | RV/LV > 1                 | 80%                          | 0%               | RV/LV at H24                                                   |
| SUNSET sPE, 2021   | USAT (EKOS)       | Other CD Tlysis | 82         | RV/LV > 1<br>+/- 个cTn/BNP | 95%                          | 0%               | Miller score<br>(CTPA) at H48                                  |
| Kroupa et al, 2022 | CD Tlysis         | anticoagulant   | 23         | RV/LV > 0,9               | 100%                         | 0%               | 个RV, ↓sPAP,<br>↓Qanadli: H48                                   |
| CANARY, 2022       | CD Tlysis         | Anticoagulant   | 94         | RV/LV > 0,9               | 100%                         | 0%               | RV/LV at M3                                                    |

# Major bleeding in prospective studies of catheter-directed thrombolysis



#### Intracranial major bleeding: 0.7% (95%Cl, 0-1.3)



Giri et al Circulation 2019;140:e774-801

#### Conclusion

Patients with high-risk PE are rare but have a high short-term mortality rate

A majority of these patients can be treated successfully with inotropic agents and systemic fibrinolysis

Surgical embolectomy or catheter-directed treatment must be discussed if systemic thrombolysis is contraindicated or has failed

VA-ECMO is an effective therapeutic option for the most severe high-risk PE patients (i.e. cardiac arrest / refractory shock)

The best strategy (i.e. stand alone treatment vs bridge to surgical or catheter-directed reperfusion strategy) requires additional dedicated studies

Pulmonary Embolism Responsive Team (PERT) can help to decide on the most appropriate therapy.