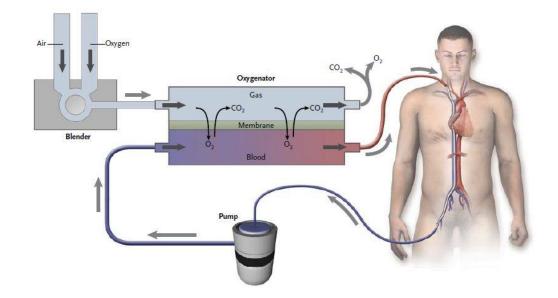
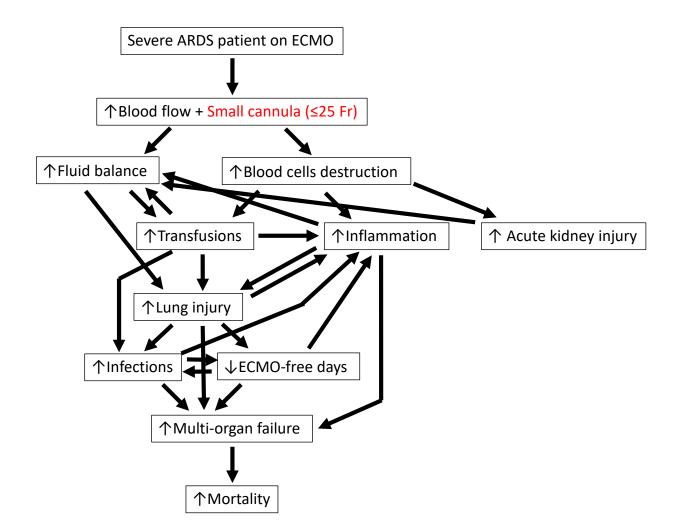


Impact of drainage cannula size and blood flow in VV-ECMO

Tommaso Mauri

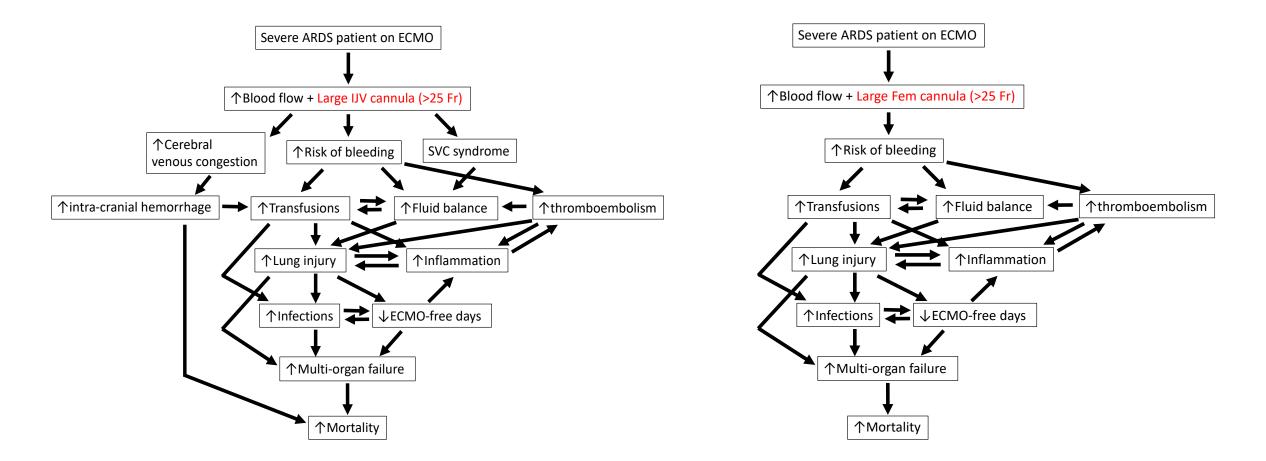
Policlinico Hospital, University of Milan, Italy Plug group




ECMO: a powerful modulator of physiology

Physiologic effects of ECMO are not limited to improved gas exchange:

- 1. *Ventilation* can be modulated to avoid VILI and PSILI
- 2. *Drainage cannula size* can impact inflammation and fluid balance
- 3. *Blood flow* could impact V/Q mismatch and pulmonary circulation



Risks of small drainage cannula size

Specific risks: need of higher volemia to maintain blood flow, very low negative drainage pressure causing hemolysis

Risks of large drainage cannula size

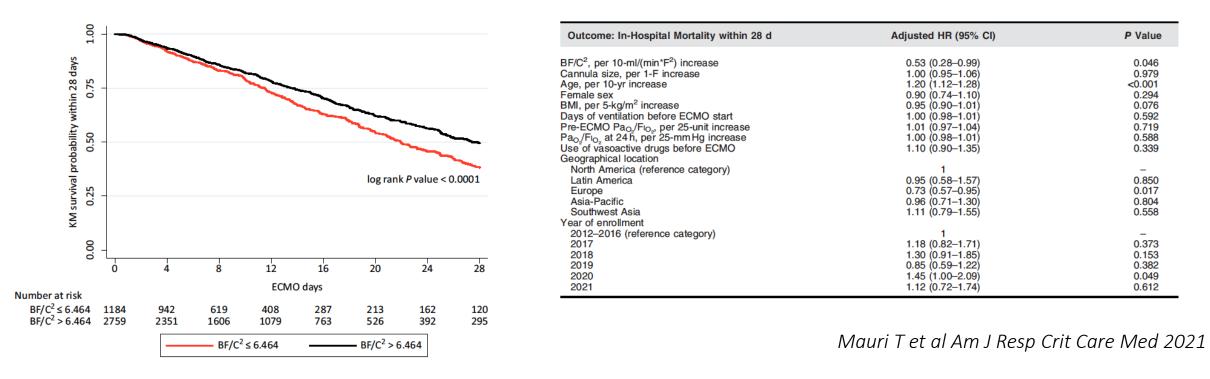
Specific risks: bleeding, cerebral venous congestion for jugulo-femoral or single site IJV

LARGE vs SMALL: EQUIPOISE??

Cannula size is associated with mortality

Extracorporeal membrane oxygenation network organisation and clinical outcomes during the COVID-19 pandemic in Greater Paris, France: a multicentre cohort study

Guillaume Lebreton, Matthieu Schmidt, Maharajah Ponnaiah, Thierry Folliguet, Marylou Para, Julien Guihaire, Emmanuel Lansac, Edouard Sage, Bernard Cholley, Bruno Mégarbane, Pierrick Cronier, Jonathan Zarka, Daniel Da Silva, Sebastien Besset, Igor Lacombat, Nicolas Mongardon, Christian Richard, Jacques Duranteau, Charles Cerf, Gabriel Saiydoun, Romain Sonneville, Jean-Daniel Chiche, Patrick Nataf, Dan Longrois, Alain Combes, Pascal Leprince, and the Paris ECMO-COVID-19 investigators*


	All patients (n=302)	Survival status 90 days af	Survival status 90 days after ECMO	
		Alive (n=138)	Dead (n=164)	
Venovenous ECMO	288 (95%)	133 (96%)	155 (95%)	0.44
Femoro-jugular	273 (90%)	130 (94%)	143 (87%)	0.43
Femoro-femoral	15 (5%)	3 (2%)	12 (7%)	0.020
Diameter of the admission cannula, Fr	25 (25–29)	29 (25–29)	25 (24–29)	0.017
Diameter of the return cannula, Fr	21 (19–21)	21 (19–21)	21 (19–21)	0.28
Venoarterial or venoarterial-venous ECMO	14 (5%)	5 (4%)	9 (5%)	0.44
Femoro-femoral venoarterial ECMO	10 (3%)	3 (2%)	7 (4%)	0.21
Femoro-subclavian venoarterial ECMO	1 (<1%)	1 (1%)	0	NA
Femoro-femoro-jugular venoarterial-venous ECMO	3 (1%)	1 (1%)	2 (1%)	0.56
ECMO blood flow, L/min	5·0 (4·4-5·5); n=287	5·0 (4·3–5·4); n=134	5·0 (4·5–5·4); n=153	0.38
Sweep gas flow, L/min	6 (4–8); n=285	5 (4–7); n=130	6 (4–8); n=155	0.0098

	Odds ratio (95% CI)	p value
Age, years		0.012
≤48	2.89 (1.41–5.93)	
49-56	2.01 (1.01–3.99)	
≥57	1 (ref)	
Pre-ECMO renal component of the SOFA-II score, per point increase	0·67 (0·55-0·83)	0.0003
Time between intubation and ECMO, per day decrease	0.91 (0.84–0.99)	0.022
Centre with ≥30 venovenous ECMOs in previous year	2·98 (1·46–6·04)	0.0026

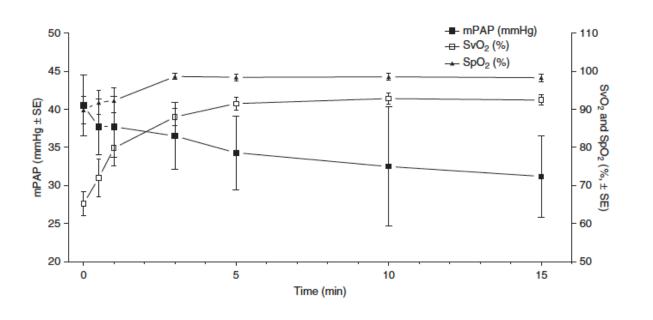
ECMO for COVID in Paris: survivors had larger drainage cannula size, same blood flow, lower gas flow (lower VCO2 or lower dead space of the NL?)

In multivariate analysis, cannula size disappeared inside centre experience?

Cannula size vs. blood velocity within the cannula

ml/min/Fr² \rightarrow 5 l/min with 27 Fr \rightarrow 5000/729 = 6.85 (proxy for distance/time inside the cannula)

ELSO registry, 3535 ARDS patients, dual site cannulation, no COVID


BF/C² but not cannula size was an independent predictor of mortality after adjustment for age, sex, BMI, days of MV before ECMO, PF ratio before ECMO, shock, world region, calendar year Interestingly, Europe was protective and year 2020 was more dangerous

Cannula size or ECMO blood flow?

- Both large and smaller cannulas carry intrinsic risks
- The key could be blood flow
- Once you choose your drainage cannula size, try to increase the blood flow as much as
 possible
- To obtain BF/C² >6.464:

Cannula size (Fr)	Minimal blood flow (I/min)	
21	2.85	
23	3.42	
25	4.04	
27	4.71	
29	5.44	
31	6.21	

«Positive» effects of ECMO blood flow?

Reis Miranda D, AJRCCM 2015

Spinelli E, ASAIO J 2020

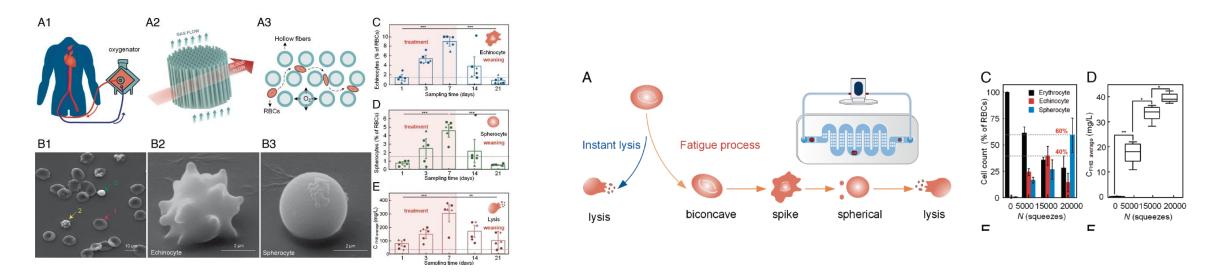
Table 3. Changes in Clinical Parameters Associated with ECMO Initiation				
Characteristic	Before ECMO (N = 20)	At Day 1 (N = 20)	<i>p</i> -values	
Arterial pH	7.249 (7.208–7.353)	7.380 (7.363–7.425	<0.001	
PaCO _a (mmHg)	`65±19 ´	`46±8	<0.001	
PaO, (mmHg)	69 (63-87)	86 (67-111)	0.009	
Arterial lactate (mmol/l)	1.5 (1.2-2.4)	1.6 (1.1-3.0)	0.298	
Shunt venous admixture (%)	41±13	54±18	0.005	
SvO ₂ (%)	68±11	84±7	0.001	
Tidal volume-ml/kg PBW	6.5±1.5	3.9 ± 2.1	0.005	
Respiratory rate (bpm)	25±5	9±2	<0.001	
PEEP (cm H _a O)	13±4	17±4	0.001	
Plateau pressure (cm H,O)	31±3	28±3	<0.001	
Driving pressure (cm H ₂ O)	18±4	11±4	<0.001	
FiO, (ventilator) (%)	86±17	75±20	0.016	
Respiratory-system compliance (ml/cm H_O)	21 (18–24)	21 (16–30)	0.146	
PAPs (mmHg)	46±11	40±12	0.001	
PAPm (mmHg)	34±9	31±8	0.042	
PAPd (mmHg)	26±6	24±7	0.062	
Wedge pressure (mmHg)	17±4	16±4	0.906	
Cardiac output (L/min)	7.4±2.1	7.7±1.9	0.276	

ECMO, extracorporeal membrane oxygenation; PAPd, diastolic pulmonary artery pressure; PAPm, mean pulmonary artery pressure; PAPs, systolic pulmonary artery pressure; PBW, predicted body weight; PEEP, positive end-expiratory pressure.

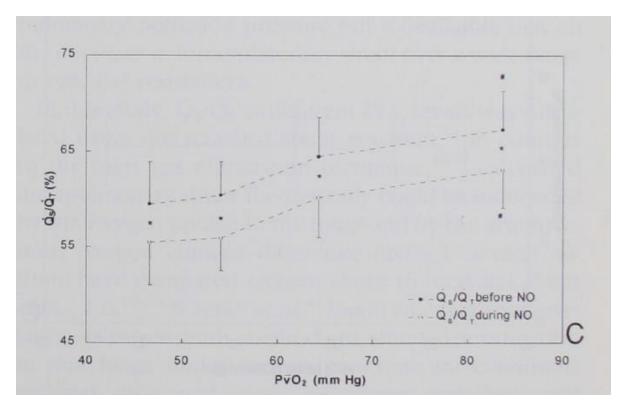
After ECMO start, PAPs could decrease

However, upon start of ECMO, there are a number of mechanisms that could impact PAPs: SvO_2 , $PvCO_2$ and pH directly improve PAPs, decreased driving and mean airways pressure lowers RV afterload and pulmonary vascular compression

«Negative» effects of ECMO blood flow?



Fatigue of red blood cells under periodic squeezes in ECMO


Yunfan Pan^{a,1}, Yan Li^{a,1}, Yongjian Li^a, Jiang Li^b, and Haosheng Chen^{a,2}

Edited by David Weitz, Harvard University, Cambridge, MA; received June 25, 2022; accepted October 26, 2022

Periodic squeeze of RBCs by the oxygenator fibres induces reduction of intracellular ATP, transformation in spherocytes and lysis \rightarrow inflammation \rightarrow lung injury and multiorgan failure The more the squeezes (higher blood flow vs. prolonged time on ECMO) the more lysis

«Negative» effects of ECMO blood flow?

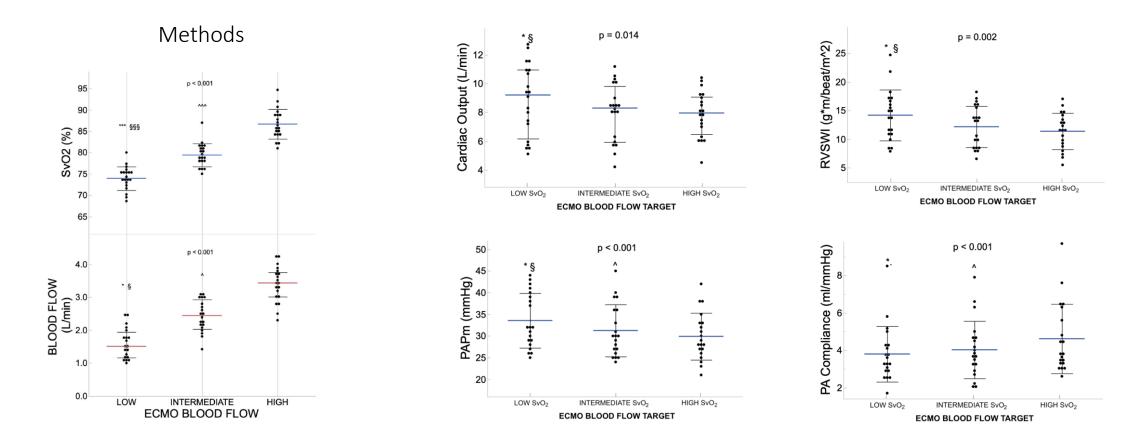
Benzing A, Anesthesiology 1997

Table 3.	Changes in Clinical Parameters Associated with	
	ECMO Initiation	

alues .001 .001 .009 .298 .005
.001 .009 .298
.009 .298
.009 .298
.298
.005
.001
.001 .005
.003
.001
.001
.001
.016
.146
.001
.042
.062
.906
.276

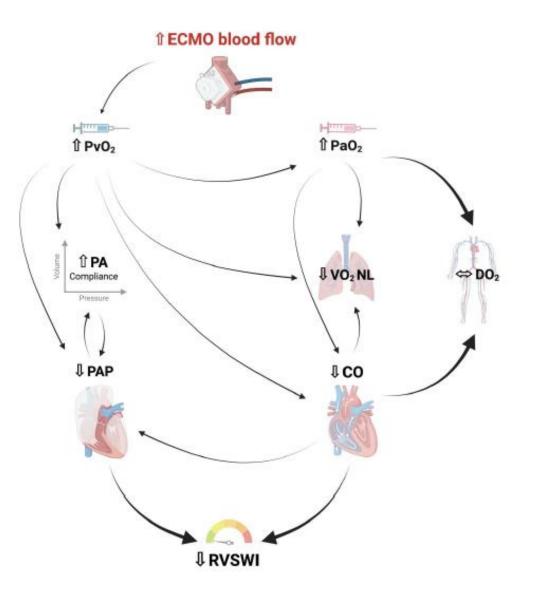
ECMO, extracorporeal membrane oxygenation; PAPd, diastolic pulmonary artery pressure; PAPm, mean pulmonary artery pressure; PAPs, systolic pulmonary artery pressure; PBW, predicted body weight; PEEP, positive end-expiratory pressure.

Spinelli E, ASAIO J 2020


Higher PvO₂ blunts hypoxic pulmonary vasoconstriction and could increase intrapulmonary shunt

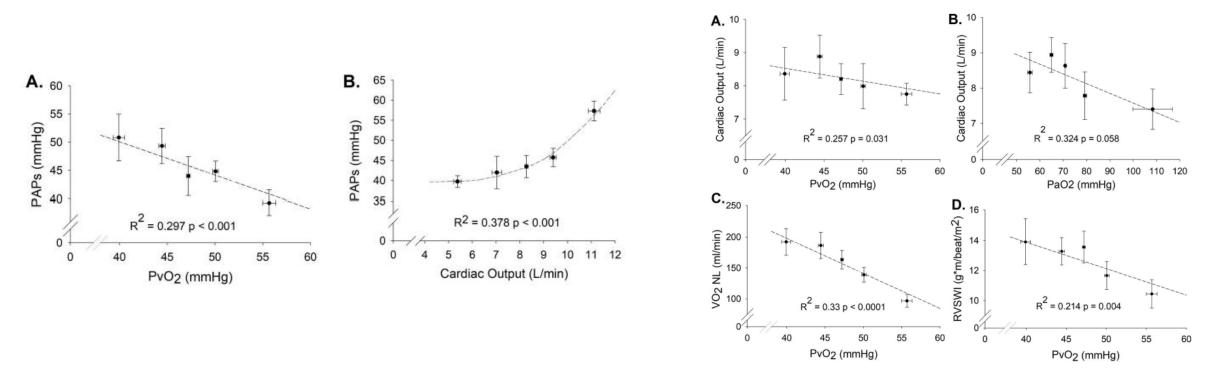
Pulmonary function (oxygenation and CO₂ removal) could worsen on ECMO?

Phsyiologic effects of ECMO blood flow


- ARDS patients on ECMO
- No shock, no severe RV failure
- EIT + Swan Ganz monitoring
- 2 centers (Milan Policlinico, Monza San Gerardo)
- Clinical PEEP, DP 12-14, RR 10-12
- Unchanged equal FiO₂ and FdO₂, ECMO gas flow
- 3 blood flow for 20 minutes: target SvO₂ 70-75, 75-80, >80%
- Complete physiologic assesment

ECMO blood flow and pulmonary hemodynamics

No change in MV, blood flows of 1.5, 2.4, 3.5 l/min (BF/C² of 2.56, 3.90, 5.49 ml/min/Fr²) Minimal change in PVR: $180 \rightarrow 170 \rightarrow 159$ dyn*s*cm⁻⁵ p=0.064 Minimal decrease in DO₂: $1110 \rightarrow 1027 \rightarrow 1041$ ml/min p=0.044 Lower RV work, stable hemodynamic/oxygenation balance efficiency

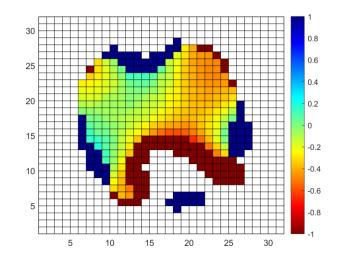

Mechanisms of RV protection by ECMO blood flow

Increased $PvO_2 \rightarrow \downarrow PAP$, $\uparrow PA$ compliance, $\downarrow VO_2NL$, $\downarrow CO$, $\uparrow PaO_2$

vvECMO provides hemodynamic support by allowing lower RV work with stable DO₂

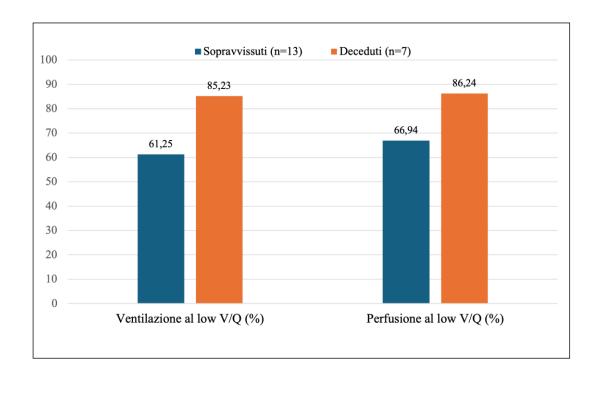
Physiologic determinants for RV protection

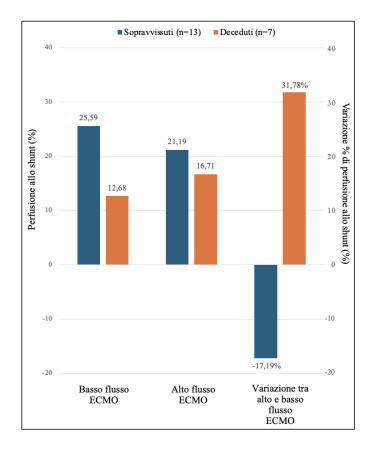
PAPs correlated with PvO₂ (linear) and CO (treshold effect)


- Cardiac output correlated with PvO₂ and PaO₂
- RV workload correlated with PvO₂

PvO₂ increase is the real target (more positive effects) rather than CO decrease?

Spinelli et al AJRCCM 2024


What about VQ mismatch?


Variables	ECMO Blood Flow Target			p-value	
	Low SvO ₂	Intermediate SvO ₂	High SvO ₂	- ·	
	Blo	od gases	· •	L	
SvO ₂ (%)	73.9 ± 2.8 * §	79.4 ± 2.7 ^	86.7 ± 3.5	< 0.001	
PvO₂ (mmHg)	42 ± 3 *** §§§	47 ± 3 ^^^	53 ± 4	< 0.001	
PvCO ₂ (mmHg)	53 ± 5	50 ± 5	48 ± 5	<0.001	
PaO ₂	63 [57-70] * §	70 [62-81] ^	83 [72-99`	< 0.001	
PaCO₂ (mmHg)	52 ± 6 *** §§§	49 ± 5 ^^	47 ± 6	<0.001	
Intrapulmonary shunt (%)	51.5 [41.9-64.6]	50.9 [40.2-60.2]^	52.6 [45.3-64.9]	0.638	
Arterial pH	7.39 ± 0.05	7.41 ± 0.05	7.42 ± 0.05	< 0.001	
	EIT ventilati	ion and perfusion		·	
Ventral Ventilation (%)	28 [21-34]	29 [24-36]	29 [24-35]	0.511	
Middle Ventilation (%)	60 [43-69]	56 [43-69]	58 [44-68]	0.443	
Dorsal Ventilation (%)	11 [7-25]	16 [6-25]	15 [5-24]	0.511	
Ventral Perfusion (%)	21 [15-29]	21 [15-28]	21 [15-27]	0.520	
Middle Perfusion (%)	67 [53-69]	65 [56-67]	64 [54-70]	0.336	
Dorsal Perfusion (%)	15 [10-20]	16 [13-22]	15 [13-19]	0.115	
EIT V/Q mismatch					
Only ventilated units (%)	10.7 [4.7-14.5] *	6.7 [3.8-10.9]	10.9 [5.5-19.6]	0.016	
Only perfused units (%)	16.7 [7.9-22.5]	17.3 [12.2-22.5]	16.6 [12.8-21.2]	0.212	
Unmatched units (%)	25.2 [10.3-27.7]	23.1 [19.6-31.8]	27.8 [24.7-31.3]	0.086	

No apparent effect on calculated shunt and EIT-based VQ mismatch (macroscopic analysis) PvO2 range not wide enough to see differences? Stable not so "inflamed" patients?

Loss of shunt compensation as a sign of severity?

At lowest blood flow rate, non-survivors had larger ventilation and perfusion to the low VQ compartment

When blood flow and SvO₂ increase, survivors decrease shunt (active compensation) while nonsurvivors decrease shunt ("passive" behaviour?)_

Work in progress..

Personalised ECMO to improve physiology (and outcomes?):

- Blood flow \rightarrow highest allowed by drainage cannula size (BF/C² >6.464), monitor hemolysis
- $SvO_2 > 80\%$ and $PvO_2 > 45$ mmHg to protect the right heart and the pulmonary circulation
- Larger low VQ and compensation of shunt to identify more severe patients

Still a lot of work to understand physiology and translate into clinical practice..