

Hybrid therapy in the ICU

Stéphane Gaudry

M.D., Ph.D.

MIR

Hôpital Avicenne, Bobigny/ Hôpital Jean Verdier, Bondy UMRS 1155, Tenon, PARIS

UMRS 1155

Des maladies rénales rares aux maladies fréquentes, remodelage et réparation

Conflict of interest

Studies funded by grants from French Ministry of Health and French Ministry of research

Christophe Vinsonneau

REVIEW

Current state of the art for renal replacement therapy in critically ill patients with acute kidney injury

Sean M. Bagshaw^{1*}, Michael Darmon², Marlies Ostermann³, Fredric O. Finkelstein⁴, Ron Wald⁵, Ashita J. Tolwani⁶, Stuart L. Goldstein⁷, David J. Gattas⁸, Shigehiko Uchino⁹, Eric A. Hoste^{10,11} and Stephane Gaudry¹²

Extracorporeal RRT

Peritoneal dialysis

Parameter	Modality	Modality			
	IRRT	Hybrid IRRT SLED/EDD/PIRRT	CRRT	PD	
Duration (h)	4–6	6–16	24	24	
Frequency	Daily/alternate days	Daily/alternate days	Daily	Daily	
Solute transport	Diffusion	Diffusion or convection or both	Diffusion or convection or both	Diffusion	

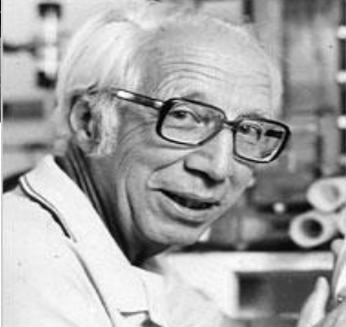
"Hybrid therapies" encompass many names

- Extended daily dialysis (EDD)
- Sustained low efficiency dialysis (SLED)
- Prolonged intermittent renal replacement therapy (PIRRT)
- But principle is the same....

Provocative statement

Hybrid therapies do not exist!!

Provocative statement


Hybrid therapies do not exist!!

Hybrid therapies

=

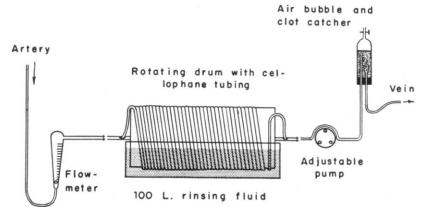
Intermittent RRT done properly (for ICU patients)

Progress in Internal Medicine

DIALYSIS IN TREATMENT OF UREMIA

Artificial Kidney and Peritoneal Lavage

W. J. KOLFF, M.D.


1954

First **hemodialysis** treatment by W.J. Kolff:

- . Duration of the treatment : 11.5 hours
- . Blood flow: 116 ml/min

Kolff performed hybrid therapies

Willem Johan "Pim" Kolff February 14, 1911, Leiden February 11, 2009

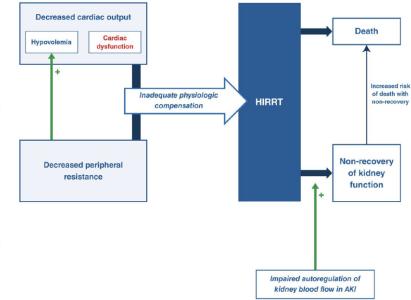
REVIEW

Mechanisms for hemodynamic instability related to renal replacement therapy: a narrative review

Adrianna Douvris¹, Khalid Zeid², Swapnil Hiremath¹, Sean M. Bagshaw³, Ron Wald⁴, William Beaubien-Souligny⁴, Jennifer Kong¹, Claudio Ronco⁵ and Edward G. Clark^{1*}

Intensive Care Med (2019) 45:1333–1346 https://doi.org/10.1007/s00134-019-05707-w

REVIEW


Mechanisms for hemodynamic instability related to renal replacement therapy: a narrative review

Adrianna Douvris¹, Khalid Zeid², Swapnil Hiremath¹, Sean M. Bagshaw³, Ron Wald⁴, William Beaubien-Souligny⁴, Jennifer Kong¹, Claudio Ronco⁵ and Edward G. Clark^{1*}

RRT-related factors

- Modality
- UF rate, amount
- Osmolality changes
- Dialysate temperature
- Dialysate sodium
 Dialysate calcium
- Dialysate buffer
- Membrane

Critical Care Nephrology and Acute Kidney Injury

Prolonged Intermittent Kidney Replacement Therapy

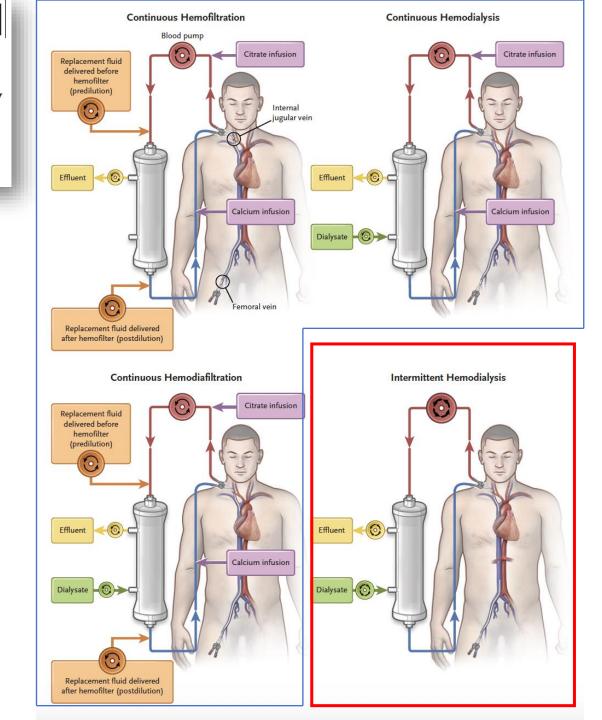
Zoey Levine and Anitha Vijayan 📵

«compared with IHD, hybrid therapy offers more hemodynamic stability, particularly in patients who remain highly vulnerable to hypotension from aggressive ultrafiltration over a shorter duration of treatment.... »

Prolonged Intermittent Kidney Replacement Therapy

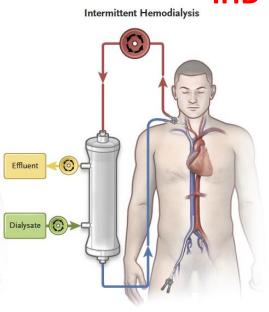
Zoey Levine and Anitha Vijayan 📵

"Reducing the efficiency of solute clearance (thereby reducing osmotic shifts) and extending the duration of treatment (thereby lowering the ultrafiltration rate) make PIRRT less likely to provoke hemodynamic instability during RRT (HIRRT) relative to IHD."

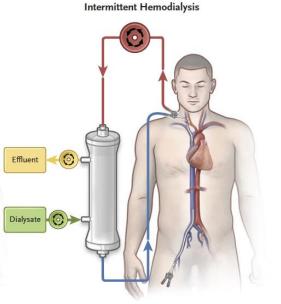

REVIEW ARTICLE

Julie R. Ingelfinger, M.D., Editor

Extracorporeal Kidney-Replacement Therapy for Acute Kidney Injury


Stéphane Gaudry, M.D., Ph.D., Paul M. Palevsky, M.D., and Didier Dreyfuss, M.D.

CRRT



- Widely available
- Better for transportation (CT scan, operating theater)
- Better for rehabilitation
- Rapid correction of metabolic abnormalities
- No anticoagulation option

Disadvantage

Hemodynamic instability?

REVIEW

Current state of the art for renal replacement therapy in critically ill patients with acute kidney injury

Sean M. Bagshaw^{1*}, Michael Darmon², Marlies Ostermann³, Fredric O. Finkelstein⁴, Ron Wald⁵, Ashita J. Tolwani⁶, Stuart L. Goldstein⁷, David J. Gattas⁸, Shigehiko Uchino⁹, Eric A. Hoste^{10,11} and Stephane Gaudry¹²

Strategies to improve hemodynamic tolerance of IRRT

Strategies to improve hemodynamic tolerance of IRRT

INTERVENTION	PHYSIOLOGICAL EFFECT	STRATEGY
Isovolemic initiation	Preserve intravascular volume, prevent hypovolemia	Fill circuit with 0.9% saline
Reduced dialysate temperature	Preserve vasomotor tone	Decrease dialysate temp by 1 to 2 °C
Reduced dialysate flow rate	Preserve plasma osmolality and prevent rapid shift in plasma osmolality	Decrease to 50-100 ml/min
Dialysate [Na+] profiling	Preserve plasma osmolality, promote vascular refill	Progressive increase dialysate [NA+]> 145 mmol/l
Prefential use bicarbonate buffer	Preserve myocardial contractility	Avoid acid-based dialysis buffer
Conservative UF	Preserve intravascular volume, prevent hypovolemia	Start with isolated dialysis; gentle UF; extend session to achieve fluid balance goals

What do current guidelines recommend?

• <u>KDIGO</u>: We suggest using CRRT, rather than standard intermittent RRT, for hemodynamically unstable patients. (2B)

• French guidelines: Continuous and intermittent RRT techniques can be used equally, taking into account their availability and the experience of the team. Strong agreement

Palevsky, Paul M. MD^{1,a}

Debate: Intermittent Hemodialysis versus Continuous Kidney Replacement Therapy in the Critically Ill Patient: Moderator Commentary

CJASN 2023

D | D | |

"Merely stating that **IHD** and **CRRT** provided equivalent outcomes is misleading if it is not acknowledged that **similar outcomes may not be achievable with the short**, **rapid treatments that characterize most inpatient hemodialysis in US**. Treatment duration will need to be extended **from 3-4 hours to 5-5**^{1/2} **hours** to achieve similar outcomes"

Definition

Form of KRT that offers either diffusive or convective clearance that is longer than a standard hemodialysis session of 3–4 hours, but not 24-hour duration like continuous KRT (CKRT)

PIRRT could be performed using hemodialysis machines or CKRT machines

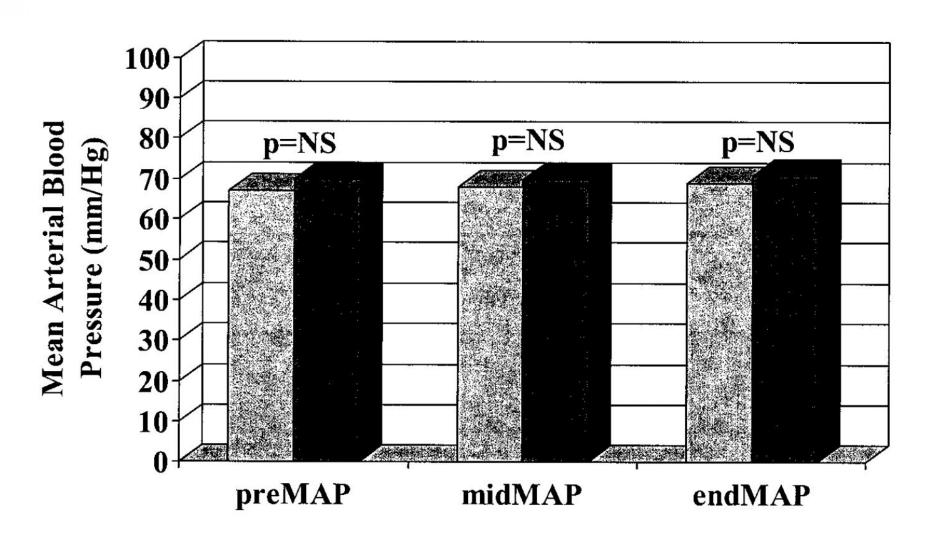
Extended Daily Dialysis: A New Approach to Renal Replacement for Acute Renal Failure in the Intensive Care Unit

AJKD 2000

Victoria A. Kumar, MD, Maureen Craig, RN, MSN, Thomas A. Depner, MD, and Jane Y. Yeun, MD

Disadvantages of CVVH:

- Intensive nursing requirements
- Continuous anticoagulation
- Patient immobility
- Expense


Extended daily dialysis: n=25

CVVH: n= 17

	EDD	CVVH
Total no. of treatment days	367	113
Median duration of daily		
treatment (h) Median no. of treatments	7.5 (6-8)	19.5 (13.4-24)
performed per patient	9 (3-39)	6 (3-15)

Extended Daily Dialysis: A New Approach to Renal Replacement for Acute Renal Failure in the Intensive Care Unit

Victoria A. Kumar, MD, Maureen Craig, RN, MSN, Thomas A. Depner, MD, and Jane Y. Yeun, MD

Extended Daily Dialysis: A New Approach to Renal Replacement for Acute Renal Failure in the Intensive Care Unit

Victoria A. Kumar, MD, Maureen Craig, RN, MSN, Thomas A. Depner, MD, and Jane Y. Yeun, MD

Patients treated with EDD required significantly less heparin 4,000 U/d vs 21,100 U/d; P=0.001

Prolonged Intermittent Kidney Replacement Therapy

Zoey Levine and Anitha Vijayan 📵

Table 1. Prolonged intermittent KRT: Nomenclature and commonly used KRT machines

Acronym	Procedure	KRT Machines	
Diffusion only			
SLED (12,13,47)	Sustained low-efficiency dialysis	Fresenius 2008, Gambro AK200S, Gambro Integra	
ED (48), EDD (5)	Extended dialysis or Extended daily dialysis	Fresenius 2008, Fresenius Genius	
SLED-BD (23)	Sustained low-efficiency dialysis with batched dialysate	Fresenius Genius	
E-HFD (49)	Extended high-flux hemodialysis	Fresenius Genius	
Convection only			
AVVH (14,15)	Accelerated venovenous hemofiltration	NxStage System One	
Diffusion and conve	ection		
S-HDF (16)	Sustained hemodiafiltration	Nikkiso DBB-02	
SLEDD-f (50)	Sustained low-efficiency daily diafiltration	Fresenius 4008S ArRT-Plus	
PDIKRT (51)	Prolonged daily intermittent KRT	Fresenius 4008S ArRT-Plus	

CKRT PIKRT Intermittent HD

100–300 ml/min 200–400 ml/min Blood flow rate 400–500 ml/min

CKRT PIKRT Intermittent HD

100–300 ml/min 200–400 ml/min Blood flow rate 400–500 ml/min

*20–25 ml//kg/h *66–200 ml/min Dialysate flow rate

Diffusive technique: Dialysate flow rate
Convective technique: Replacement fluid flow rate

Both technique: Combination

CKRT	PIKRT	Intermittent HD
100-300 ml/min	200–400 ml/min Blood flow rate	400–500 ml/min
*20-25 ml//kg/h	*66–200 ml/min Dialysate flow rate	600–800 ml/min
0-200 ml/h	0-400 ml/hour Typical UF rate	0–1000 ml/hour

CKRT		PIKRT		Intermittent HD
100–300 ml/min		200–400 ml/min	Blood flow rate	400–500 ml/min
*20-25 ml//kg/h		*66–200 ml/min	Dialysate flow rate	600–800 ml/min
0–200 ml/h		0–400 ml/hour	Typical UF rate	0–1000 ml/hour
24 hours	Duration	8–12 hours		3-4 hours

CKRT		PIKRT		Intermittent HD
100-300 ml/min		200–400 ml/min	Blood flow rate	400–500 ml/min
*20-25 ml//kg/h		*66–200 ml/min	Dialysate flow rate	600–800 ml/min
0-200 ml/h		0-400 ml/hour	Typical UF rate	0-1000 ml/hour
24 hours	Duration	8–12 hours		3-4 hours
7 days/week	Frequency	4–7 days/week		3 days/week

Are hybrid therapies frequently used?

ORIGINAL ARTICLE

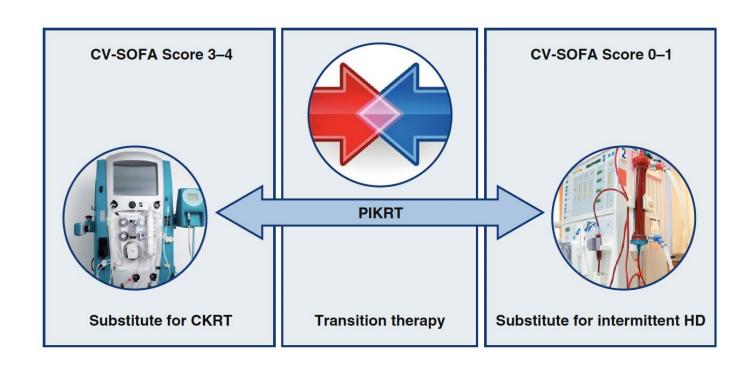
Timing of Initiation of Renal-Replacement Therapy in Acute Kidney Injury

The STARRT-AKI Investigators, for the Canadian Critical Care Trials Group, the Australian and New Zealand Intensive Care Society Clinical Trials Group, the United Kingdom Critical Care Research Group, the Canadian Nephrology Trials Network, and the Irish Critical Care Trials Group*

- Multicenter, International, RCT
- 165 hospitals in 15 countries
- 2927 adults ICU patients with severe AKI

Characteristic	Accelerated strategy (N=1418)	Standard strategy (N=903)	P value
RRT modality – no. (%)			0.53
CRRT	968 (68.4)	621 (70.6)	
IHD	383 (27.0)	223 (25.3)	
SLED	65 (4.6)	36 (4.1)	

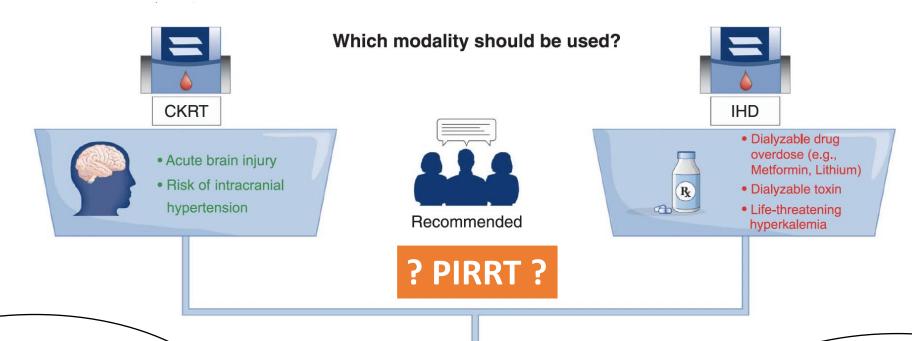
A Prospective International Multicenter Study of AKI in the Intensive Care Unit


Josée Bouchard,* Anjali Acharya,[†] Jorge Cerda,[‡] Elizabeth R. Maccariello,[§] Rajasekara Chakravarthi Madarasu,[‡] Ashita J. Tolwani, [¶] Xinling Liang,** Ping Fu,^{††} Zhi-Hong Liu,^{‡‡} and Ravindra L. Mehta^{§§}

Clin J Am Soc Nephrol 10: 1324-1331, 2015

SLED was most often used in emerging countries 45.2% versus 4.3%; P=0.001

Potential indications of PIRRT


- 1. As a **substitute for CRRT** to treat hemodynamically unstable patients with AKI
- 2. As a **substitute for IHD**
- 3. For de-escalation of treatment in the ICU

Debate: Intermittent Hemodialysis versus Continuous Kidney Replacement Therapy in the Critically Ill Patient: The Choice Should Be

Evidence Based

Khalil Charbi, 1,2 Didier Dreyfuss, 2,3,4 and Stéphane Gaudry 1,2,5

Insufficient data to determine whether PIRRT can be safely implemented in patient with traumatic brain injury. CKRT remains the preferred modality

- Hemodynamic instability
- Fluid overload
- Cost-effectiveness
- Kidney recovery
- Mortality

Debated

For patients with intoxications or extreme electrolyte disturbances where highly efficient small molecule clearance is desired, IHD should be favored over PIRRT

Advantages of hybrid therapies (or IRRT....) compared to CRRT

They facilitate the performance of **diagnostic imaging**, **rehabilitation**, and other procedures

SYSTEMATIC REVIEW

The effects of active mobilisation and rehabilitation in ICU on mortality and function: a systematic review

Claire J. Tipping^{1,2}, Meg Harrold^{4,5}, Anne Holland^{2,6}, Lorena Romero⁷, Travis Nisbet³ and Carol L. Hodgson^{1,2*}

© 2016 Springer-Verlag Berlin Heidelberg and ESICM

Conclusion: Active mobilisation and rehabilitation in the ICU has no impact on short- and long-term mortality, but may improve mobility status, muscle strength and days alive and out of hospital to 180 days.

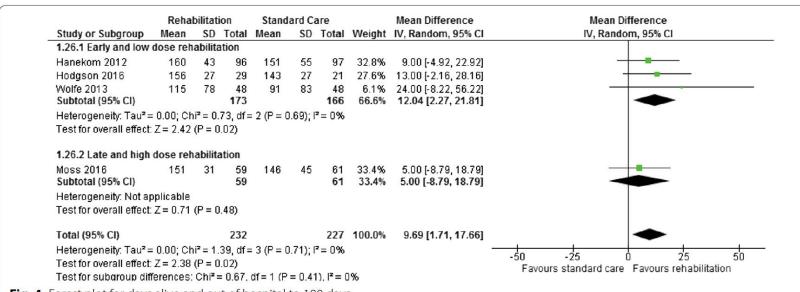


Fig. 4 Forest plot for days alive and out of hospital to 180 days

Advantages of hybrid therapies (or IRRT....) compared to CRRT

They facilitate the performance of **diagnostic imaging**, **rehabilitation**, and other procedures

There is **less need for anticoagulation**

Regional citrate anticoagulation is possible if CRRT machine is used.

Advantages of hybrid therapies (or IRRT....) compared to CRRT

They facilitate the performance of **diagnostic imaging**, **rehabilitation**, and other procedures

There is less need for anticoagulation

Regional citrate anticoagulation is possible if CRRT machine is used.

It is **cost-effective**

Costs by modality

	SLED (\$)	CRRT citrate (\$)	CRRT heparin (\$)
Supply cost/day	69.75	402.80	334.95
HD RN cost/day	168.75 ^a	37.50	37.50
Total cost/day	238.50	440.30	372.45
Total cost/week	1431	3089	2607

Advantages of hybrid therapies (or IRRT....) compared to CRRT

They facilitate the performance of **diagnostic imaging**, **rehabilitation**, and other procedures

Regional citrate anticoagulation is possible if CRRT machine is used.

There is **less need for anticoagulation**

It is **cost-effective**

It allows for utilization of one machine for up to 3 patients/day

Reducing the risk of Shortage of RRT for COVID-19 patients

Impending Shortages of Kidney Replacement Therapy for COVID-19 Patients

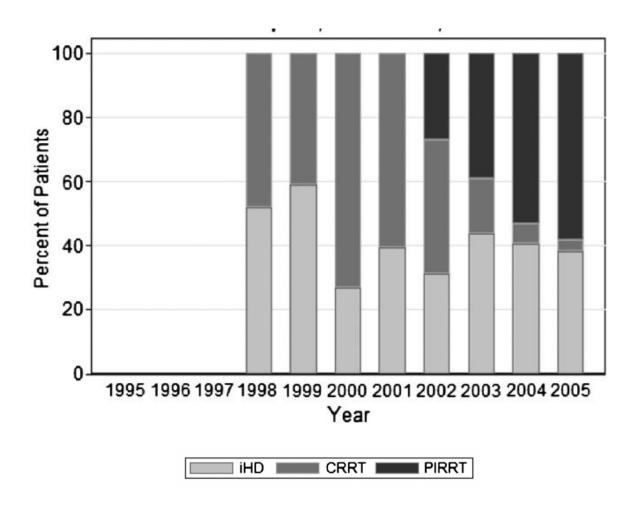
David S. Goldfarb , ^{1,2} Judith A. Benstein, ² Olga Zhdanova, ^{2,3} Elizabeth Hammer, ² Clay A. Block, ⁴ Nina J. Caplin, ^{2,3} Nathan Thompson, ^{2,3} and David M. Charytan ²

CJASN 15: 880–882, 2020. doi: https://doi.org/10.2215/CJN.05180420

"An informal survey of our intensive care units (ICUs) this week demonstrates that 20%–40% of intubated ICU patients have AKI that necessitates KRT"

We initiated the use of **acute peritoneal dialysis**, a modality rarely used in American ICUs in recent years, to remove pressures from our CKRT supply

We must now highlight the possibility that before a deficiency of ventilators become an issue in caring for patients with COVID-19, provision of KRT may face critical shortages.


Comparison between hybrid therapies and CRRT? Clinical studies

Mortality rate comparison after switching from continuous to prolonged intermittent renal replacement for acute kidney injury in three intensive care units from different countries

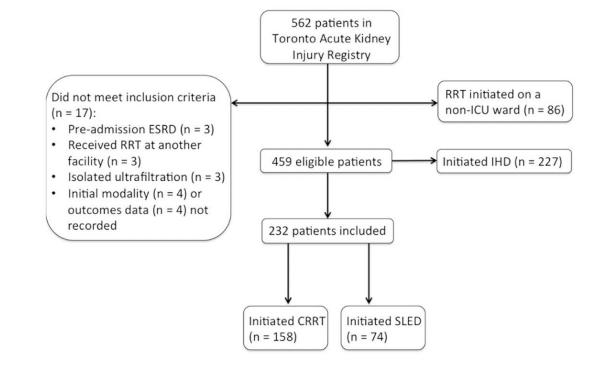
Mark R. Marshall^{1,2}, Julie M. Creamer³, Michelle Foster³, Tian M. Ma², Susan L. Mann², Enrico Fiaccadori⁴, Umberto Maggiore⁴, Brent Richards^{3,5}, Vanessa L. Wilson⁶, Anthony B. Williams^{1,7} and Alan P.N. Rankin⁷

- Retrospective study
- 3 ICUs
- 1347 patients

NDT 2011

Mark R. Marshall^{1,2}, Julie M. Creamer³, Michelle Foster³, Tian M. Ma², Susan L. Mann², Enrico Fiaccadori⁴, Umberto Maggiore⁴, Brent Richards^{3,5}, Vanessa L. Wilson⁶, Anthony B. Williams^{1,7} and Alan P.N. Rankin⁷

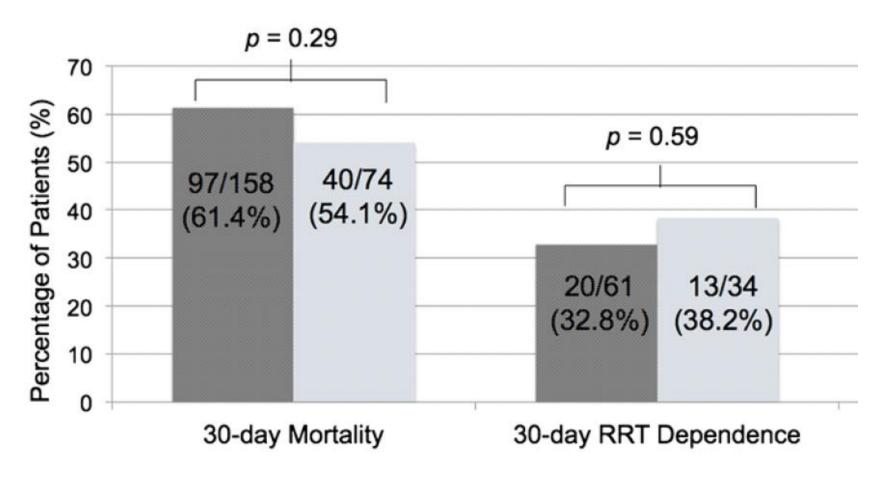
Results. The change from CRRT to PIRRT was not associated with any increase in mortality rate, with an adjusted IRR of 1.02 (0.61-1.71). The IRR was virtually identical in the three ICUs (P-value = 0.63 for the difference in the IRR between ICUs).


RESEARCH ARTICLE

Open Access

Outcomes of sustained low efficiency dialysis versus continuous renal replacement therapy in critically ill adults with acute kidney injury: a cohort study

Abhijat Kitchlu¹, Neill Adhikari^{2,3}, Karen E. A. Burns^{2,4,5}, Jan O. Friedrich^{2,4,5}, Amit X. Garg^{6,7}, David Klein^{2,4,5}, Robert M. Richardson¹ and Ron Wald^{1,4*}



- Cohort study
- SLED (target 8 h/session, blood flow 200 mL/min, predominantly without anticoagulation) (n=74)
- vs CRRT (n=158)

Outcomes of sustained low efficiency dialysis versus continuous renal replacement therapy in critically ill adults with acute kidney injury: a cohort study

Abhijat Kitchlu¹, Neill Adhikari^{2,3}, Karen E. A. Burns^{2,4,5}, Jan O. Friedrich^{2,4,5}, Amit X. Garg^{6,7}, David Klein^{2,4,5}, Robert M. Richardson¹ and Ron Wald^{1,4*}

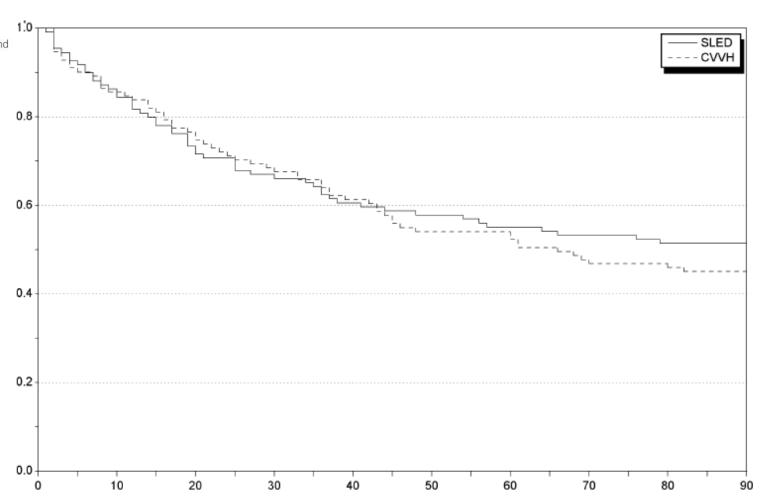
RESEARCH Open Access

SLED vs CRRT: RCT

Sustained low efficiency dialysis using a singlepass batch system in acute kidney injury - a randomized interventional trial: the REnal Replacement Therapy Study in Intensive Care Unit PatiEnts

Vedat Schwenger^{1*†}, Markus A Weigand^{2†}, Oskar Hoffmann³, Ralf Dikow¹, Lars P Kihm¹, Jörg Seckinger¹, Nexhat Miftari¹, Matthias Schaier¹, Stefan Hofer⁴, Caroline Haar⁴, Peter P Nawroth⁵, Martin Zeier¹, Eike Martin⁴ and Christian Morath¹

- Single-centre RCT, n=232
 SLED vs CVVH (Prisma)
- SLED (12 hr intended, 14.9 hrs delivered)
- CVVH (24 hr intended, 19.9 hrs delivered)


RESEARCH Open Access

Sustained low efficiency dialysis using a singlepass batch system in acute kidney injury - a randomized interventional trial: the REnal Replacement Therapy Study in Intensive Care Unit PatiEnts

Vedat Schwenger^{1*†}, Markus A Weigand^{2†}, Oskar Hoffmann³, Ralf Dikow¹, Lars P Kihm¹, Jörg Seckinger¹, Nexhat Miftari¹, Matthias Schaier¹, Stefan Hofer⁴, Caroline Haar⁴, Peter P Nawroth⁵, Martin Zeier¹, Eike Martin⁴ and Christian Morath¹

SLED vs CRRT 90-day mortality

Primary outcome

RESEARCH Open Access

Sustained low efficiency dialysis using a singlepass batch system in acute kidney injury - a randomized interventional trial: the REnal Replacement Therapy Study in Intensive Care Unit PatiEnts

Vedat Schwenger^{1*†}, Markus A Weigand^{2†}, Oskar Hoffmann³, Ralf Dikow¹, Lars P Kihm¹, Jörg Seckinger¹, Nexhat Miftari¹, Matthias Schaier¹, Stefan Hofer⁴, Caroline Haar⁴, Peter P Nawroth⁵, Martin Zeier¹, Eike Martin⁴ and Christian Morath¹

Secondary outcomes

- Hemodynamic stability did not differ
- SLED-BD group had significantly **fewer days of mechanical ventilation** (17.7 vs. 20.9; P = 0.047)
- SLED-BD group had significantly **fewer days in the ICU** (19.6 vs. 23.7, P = 0.04).
- Patients treated with SLED needed fewer blood transfusions (1,375 vs. 1,976, P = 0.02)

Schwenger et al. Critical Care 2012, **16**:R140 http://ccforum.com/content/16/4/R140

RESEARCH Open Access

Sustained low efficiency dialysis using a singlepass batch system in acute kidney injury - a randomized interventional trial: the REnal Replacement Therapy Study in Intensive Care Unit PatiEnts

Vedat Schwenger^{1*†}, Markus A Weigand^{2†}, Oskar Hoffmann³, Ralf Dikow¹, Lars P Kihm¹, Jörg Seckinger¹, Nexhat Miftari¹, Matthias Schaier¹, Stefan Hofer⁴, Caroline Haar⁴, Peter P Nawroth⁵, Martin Zeier¹, Eike Martin⁴ and Christian Morath¹

Table 4 Dialysis equipment and nursing time per patient.

	SLED (n = 115)	CVVH (n = 117)	P *
Number of membranes used	14.3 ± 15.3	7.56 ± 8.54	< 0.001
Number of dialysis catheters used	1.74 ± 1.44	1.70 ± 1.89	0.294
Nursing time spent (minutes)			
< 1	9.36 ± 14.7	14.3 ± 41.9	0.131
1 to 5	3.64 ± 4.63	6.75 ± 13.2	0.136
> 5	7.24 ± 9.51	12.1 ± 17.0	< 0.001

^{*}One-tailed Wilcoxon test. SLED: sustained low efficiency dialysis; CVVH: continuous veno-venous hemofiltration.

Prolonged Intermittent Kidney Replacement Therapy

Zoey Levine and Anitha Vijayan 🕦

Models of nursing support for PIKRT in the ICU

ICU Nursing Model

- Usually performed using CKRT equipment
- ICU nurse is responsible for set-up and take-down
- ICU nurse is responsible for monitoring patient throughout the procedure and troubleshooting alarms
- May require one-on-one ICU nursing

Prolonged Intermittent Kidney Replacement Therapy

oev Levine and Anitha Vijavan

Models of nursing support for PIKRT in the ICU

ICU Nursing Model

- Usually performed using CKRT equipment
- ICU nurse is responsible for set-up and take-down
- ICU nurse is responsible for monitoring patient throughout the procedure and troubleshooting alarms
- May require one-on-one ICU nursing

Dialysis Nursing Model

- Usually performed with an intermittent HD machine
- Dialysis nurse is responsible for set-up and take-down
- Dialysis nurse is responsible for monitoring patient throughout the procedure and troubleshooting alarms
- One dialysis nurse may oversee 2 or 3 patients in the same ICU

Prolonged Intermittent Kidney Replacement Therapy

oey Levine and Anitha Vijayan 🖸

Models of nursing support for PIKRT in the ICU

ICU Nursing Model

- Usually performed using CKRT equipment
- ICU nurse is responsible for set-up and take-down
- ICU nurse is responsible for monitoring patient throughout the procedure and troubleshooting alarms
- May require one-on-one ICU nursing

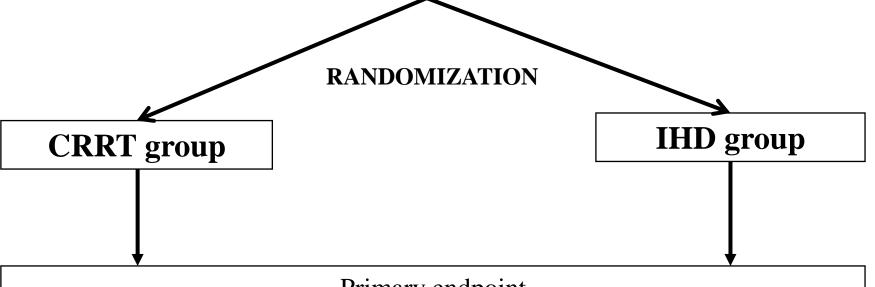
ICU and Dialysis Nurse: Collaborative Model

- Can be performed using either CKRT or intermittent HD equipment
- Dialysis nurse is responsible for set-up and take-down
- ICU nurse is responsible for monitoring patient throughout the procedure and troubleshooting alarms
- May not require one-on-one ICU nursing
- One dialysis nurse can oversee several patients in the hospital

Dialysis Nursing Model

- Usually performed with an intermittent HD machine
- Dialysis nurse is responsible for set-up and take-down
- Dialysis nurse is responsible for monitoring patient throughout the procedure and troubleshooting alarms
- One dialysis nurse may oversee 2 or 3 patients in the same ICU

To sumarize


- Hybrid therapies = a kind of IHD done (properly) for ICU patients
- Many advantages: hemodynamically well tolerated, facilitate diagnostic imaging and early mobilisation, no need anticoagulation, cost-effective, one machine for 3 patients/d
- Few limits: no guidelines for dose and frequency, no data on medication (antibiotics) dosing, risk of hypophosphatemia and hypokalemia
- Need more high quality studies

non-inferiority multicenter open-label randomized controlled trial

- PHRC 2022
- Adults under invasive MV or receiving catecholamine infusion
- RRT indication(s)
 - severe hyperK+, severe metabolic acidosis, severe pulmonary edema
 - AKI stage 3 with serum urea concentration >40 mmol/L or oligo-anuria>3 days

Primary endpoint major adverse kidney event 90 days after randomization (MAKE90) death *or* RRT *or* serum creatinine > 25% basal value

Number of participants: 1000

ICU centers: n=26

Thank you