ECCOS-TCS INTERNATIONAL CONGRESS

JUNE 2024 24-25 2024 PARS 16 RUE JEAN REY 75015

Mechanical Unloading Trials

Critical appraisal of rationale & evidence

Dirk Donker MD PhD • Cardiologist - Intensivist

ECCOS-TCS INTERNATIONAL CONGRESS

JUNE 2024 24-25 2024 PARS 16 RUE JEAN REY 75015

ØÐ

Conflicts of interest

Research cooperation & consultancy

- Getinge Maquet Critical Care AB
- Abiomed
- Hbox GmbH
- Sonion BV

www.paris-ecostcs.com

Importance of nomenclature, definitions & understanding

Importance of nomenclature, definitions & understanding Unload, offload ...

Importance of nomenclature, definitions & understanding Unload, offload ... NOT OFFSIDE – simply a GOAL !?

x.com/ESPNFC 21. June 2024

Cardiac unloading

Burkhoff D. Interventional Cardiology Review 2019

Left Ventricular Support by Catheter-Mounted Axial Flow Pump Reduces Infarct Size

Bart Meyns, MD, PHD, Jarek Stolinski, MD, Veerle Leunens, Erik Verbeken, MD, PHD, Willem Flameng, MD, PHD

Leuven, Belgium

The physiology of venoarterial extracorporeal membrane oxygenation - A comprehensive clinical perspective

Libera Fresiello,¹ Jeannine A.J. Hermens,² Lara Pladet,² Christiaan L. Meuwese^{3,4} and Dirk W. Donker^{1,2}

- Unloading or decompressing strategies: • to reduce mechanical (over-)load on the LV depends on LV cavity pressures & geometry (Laplace's law)
- Venting strategies: .

to assure transpulmonary & transcardiac blood flow to prevent LV cavity & aortic root thrombosis

Combined MCS strategies: • VA ECMO & adjunct device to increase total systemic blood flow >> VA ECMO alone

Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/02676591241237639 journals.sagepub.com/home/prf

European Journal of Heart Failure (2023) **25**, 2037–2046 doi:10.1002/ejhf.3014

Early left atrial venting versus conventional treatment for left ventricular decompression during venoarterial extracorporeal membrane oxygenation support: The EVOLVE-ECMO randomized clinical trial

Hanbit Park^{1,2}, Jeong Hoon Yang³, Jung-Min Ahn¹, Do-Yoon Kang¹, Pil Hyung Lee¹, Tae Oh Kim¹, Ki Hong Choi³, Pil Je Kang⁴, Sung-Ho Jung⁴, Sung-Cheol Yun⁵, Duk-Woo Park¹, Seung-Whan Lee¹, Seung-Jung Park¹, and Min-Seok Kim^{1*0}

¹Division of Cardiology, Department of Internal Medicine, Asan Medical Center Heart Institute, University of Ulsan College of Medicine, Seoul, Republic of Korea; ²Division of Cardiology, Department of Medicine, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, South Korea; ³Division of Cardiology, Department of Internal Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; ⁴Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; and ⁵Department of Clinical Epidemiology and Biostatistics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea;

European Journal of Heart Failure (2023) **25**, 2037–2046 doi:10.1002/ejhf.3014

Early left atrial venting versus conventional treatment for left ventricular decomposed left atrial during venoarterial extrace transseptal left atrial oxygenation support the ECMO venous circuit. Note: the femoral vein into the ECMO venous unloading using percutaneous venous venous venous unloading using percutaneous venous venous venous unloading using percutaneous venous venous venous venous unloading using percutaneous venous venous venous venous unloading using percutaneous venous venous

¹Division of Cardiology, Department of Internal Medicine, Asan Medical Center Heart Institute, University of Ulsan College of Medicine, Seoul, Republic of Korea; ²Division of Cardiology, Department of Medicine, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, South Korea; ³Division of Cardiology, Department of Internal Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; ⁴Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; and ⁵Department of Clinical Epidemiology and Biostatistics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea;

LV Unloading During Veno-Arterial ECMO

comparison of LV unloading interventions

Donker DW et al. Perfusion 2019

Left Ventricular Unloading During Veno-Arterial ECMO: A Simulation Study

DIRK W. DONKER,* DANIEL BRODIE, † JOSÉ P. S. HENRIQUES, ‡ AND MICHAEL BROOMɧ¶ ||

													LV Coronary	/	
		ECMO	Heart	MAP	MPAP	LV EDV	LV ESV	LV SV	LV EF	LV PVA	PCWP	RAP	Flow		
		Flow (L/min)	Rate (/min)	(mm Hg)	(mm Hg)	(mL)	(mL)	(mL)	(%)	(mm Hg mL)	(mm Hg)	(mm Hg)	(mL/min)	Qp/Qs	` Comment
1	Normal	0	100	101	17	121	51	70	58%	11.470		4	164	99%	
2	LV heart failure	0	100	61	33	158	127	31	20%	5946	30	11	67	97%	
3	+VA ECMO 4 L/min	4	100	85	36	173	161	12	7%	8076	35	10	106	21%	Increase in LV
4	+Afterload ↓	4	100	65	33	161	134	27	17%	6294	30	10	74	38%	loading
5	+800 mL blood volume ↓ + afterload ↓	4	100	65	25	153	135	18	12%	5945	22	3	85	30%	
6	+Inotropic support +	4	100	65	22	138	103	36	26%	6305	17	3	90	46%	
7	+IABP (no inotropic support)	4	100	65	24	149	125	24	16%	5343	21	3	121	36%	Increase in coronary flow
8	+Impella 2.5 L/min	4	100	72	23	143	131	13	9%	5600	20	3	106	40%	
9	+Impella 5.0 L/min	4	100	89	19	118	100	18	16%	3775	13	3	159	55%	
10	+Impella 5.0 L/min + afterload 1	4	100	65	19	118	100	18	16%	3811	13	3	106	55%	
11	+ASD 0.5 cm ²	4	100	58	20	123	114	9	7%	4133	14	4	85	105%	
12	+ASD 1.0 cm ²	4	100	54	19	107	102	4	4%	3158	10	5	84	150%	
13	+ASD 1.5 cm ²	4	100	52	18	98	95	2	2%	2683	8	5	83	175%	Risk of LV
14	+ASD 1.5 cm ² + afterload \uparrow	4	100	65	18	98	97	1	1%	2740	8	5	112	177%	Risk of LV
15	+Pulmonary artery venting	4	100	63	22	146	130	15	11%	5490	20	3	77	26%	thombus
16	+Left atrial venting 1.25L/	4	100	63	23	145	130	15	11%	5477	20	3	77	49%	
17	+Left ventricular venting 1.90 L/min	4	100	61	23	142	119	23	16%	5120	19	4	74	58%	

Table 1. Hemodynamic Data for Normal Physiology, Isolated Left Ventricular (LV) Failure and LV Failure Supported With VA ECMO and Various Adjunct Therapies

European Journal of Heart Failure (2023) **25**, 2037–2046 doi:10.1002/ejhf.3014

Early left atrial venting versus conventional treatment for left ventricular decompression during venoarterial extracorporeal membrane oxygenation support: The EVOLVE-ECMO randomized clinical trial

Hanbit Park^{1,2}, Jeong Hoon Yang³, Jung-Min Ahn¹, Do-Yoon Kang¹, Pil Hyung Lee¹, Tae Oh Kim¹, Ki Hong Choi³, Pil Je Kang⁴, Sung-Ho Jung⁴, Sung-Cheol Yun⁵, Duk-Woo Park¹, Seung-Whan Lee¹, Seung-Jung Park¹, and Min-Seok Kim^{1*0}

¹Division of Cardiology, Department of Internal Medicine, Asan Medical Center Heart Institute, University of Ulsan College of Medicine, Seoul, Republic of Korea; ²Division of Cardiology, Department of Medicine, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, South Korea; ³Division of Cardiology, Department of Internal Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; ⁴Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; and ⁵Department of Clinical Epidemiology and Biostatistics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea;

The EVOLVE-ECMO randomized controlled trial

Figure 1 Study flow-chart. CPR, cardiopulmonary resuscitation; LV, left ventricular; VA-ECMO, venoarterial extracorporeal membrane oxygenation.

The EVOLVE-ECMO randomized controlled trial

The EVOLVE-ECMO randomized controlled trial Early versus late LV unloading

LV unloading during VA-ECMO - 86.7% of all cases !

- 29 (96.7%) cases early LV unloading
 LV unloading after VA-ECMO initiation; median 2.4 h (1.2-7.9 h)
- 23 (76.7%) cases conventional LV unloading group LV unloading after VA-ECMO initiation; median 48.4 h (47.8-96.5 h)

Figure 1 Study flow-chart. CPR, cardiopulmonary resuscitation; LV, left ventricular; VA-ECMO, venoarterial extracorporeal membrane oxygenation.

The EVOLVE-ECMO randomized controlled trial

	Early LV unloading group (<i>n</i> = 30)	Conventional LV unloading group (<i>n</i> = 30)	p-value
Medication at randomization, <i>n</i> (%)			
IV dobutamine	12 (40.0)	9 (30.0)	0.417
IV dopamine	7 (23.3)	7 (23.3)	0.999
IV norepinephrine	26 (86.7)	26 (86.7)	0.999
IV milrinone	1 (3.3)	1 (3.3)	0.999
IV vasopressin	15 (50.0)	10 (33.3)	0.190
IV furosemide	9 (30.0)	9 (30.0)	0.999
Vital signs at randomization			
Systolic blood pressure, mmHg	95.8 <u>+</u> 25.2	86.3 <u>+</u> 17.2	0.099
Diastolic blood pressure, mmHg	69.0 <u>+</u> 20.5	63.7 <u>+</u> 17.0	0.288
Mean blood pressure, mmHg	77.9 <u>+</u> 20.4	71.9 <u>+</u> 15.1	0.206
Heart rate, bpm	82.2 ± 28.0	93.8 <u>+</u> 29.2	0.124
		Ļ	
30 (100.0%) Were inclu in the final analysis	ded	30 (100.0%) Were included in the final analysis	

Figure 1 Study flow-chart. CPR, cardiopulmonary resuscitation; LV, left ventricular; VA-ECMO, venoarterial extracorporeal membrane oxygenation.

Donker DW et al. ASAIO 2018

Donker DW et al. ASAIO 2018

Donker DW et al. ASAIO 2018

Donker DW et al. ASAIO 2018

Cardiac energetics physics meets biology !?

Effect of contractility on oxygen consumption

Burkhoff D. et al. Catheterization and Cardiovascular Interventions 2012

Cardiac energetics in physics

Pressure volume loop area and heart rate

Burkhoff D. RadcliffCardiology 2021

The EVOLVE-ECMO randomized controlled trial

	Early LV unloading group (<i>n</i> = 30)	Conventional LV unloading group (<i>n</i> = 30)	p-value
Medication at randomization, <i>n</i> (%)			
IV dobutamine	12 (40.0)	9 (30.0)	0.417
IV dopamine	7 (23.3)	7 (23.3)	0.999
IV norepinephrine	26 (86.7)	26 (86.7)	0.999
IV milrinone	1 (3.3)	1 (3.3)	0.999
IV vasopressin	15 (50.0)	10 (33.3)	0.190
IV furosemide	9 (30.0)	9 (30.0)	0.999
Vital signs at randomization			
Systolic blood pressure, mmHg	95.8 ± 25.2	86.3 <u>+</u> 17.2	0.099
Diastolic blood pressure, mmHg	69.0 ± 20.5	63.7 <u>+</u> 17.0	0.288
Mean blood pressure, mmHg	77.9 <u>+</u> 20.4	71.9 ± 15.1	0.206
Heart rate, bpm	82.2 ± 28.0	93.8 ± 29.2	0.124
Pulmonary oedema on chest radiography, n (%)	29 (96.7)	29 (96.7)	0.999
LA pressure on catheterization, mmHg	17.9 ± 10.2	21.9 ± 11.9	0.449

Table 2 Medication, vital signs, and laboratory data at randomization

Figure 1 Study flow-chart. CPR, cardiopulmonary resuscitation; LV, left ventricular; VA-ECMO, venoarterial extracorporeal membrane oxygenation.

The EVOLVE-ECMO randomized controlled trial

Therapeutic trial - early versus late LV unloading

P = 0.705

After 48hrs

Baseline

P = 0.008

After 48brs

Baseline

Clinical intuition driven LV unloading ...

Intra-Aortic Balloon Pump Effects on Macrocirculation and Microcirculation in Cardiogenic Shock Patients Supported by Venoarterial Extracorporeal Membrane Oxygenation*

Thibaut Petroni, MD¹; Anatole Harrois, MD, PhD²; Julien Amour, MD, PhD³; Guillaume Lebreton, MD⁴; Nicolas Brechot, MD, PhD¹; Sébastien Tanaka, MD²; Charles-Edouard Luyt, MD, PhD¹; Jean-Louis Trouillet, MD¹; Jean Chastre, MD¹; Pascal Leprince, MD, PhD⁴; Jacques Duranteau, MD, PhD²; Alain Combes, MD, PhD¹

Petroni T et al. Crit Care Med. 2014

PCWP with/ without IABP during ECMO

NMA U 3

Petroni T et al. Crit Care Med. 2014

Original scientific paper

Intra-aortic balloon pump protects against hydrostatic pulmonary oedema during peripheral venoarterial-extracorporeal membrane oxygenation

Nicolas Bréchot^{1,2}, Pierre Demondion^{3,4}, Francesca Santi³, Guillaume Lebreton^{3,4}, Tai Pham^{5,6}, Apostolos Dalakidis⁷, Laetitia Gambotti⁸, Charles-Edouard Luyt^{1,4}, Matthieu Schmidt^{1,4}, Guillaume Hekimian^{1,4}, Philippe Cluzel^{4,7}, Jean Chastre^{1,4}, Pascal Leprince^{3,4} and Alain Combes^{1,4}

European Heart Journal: Acute Cardiovascular Care 1–8 © The European Society of Cardiology 2017 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav DOI: 10.1177/2048872617711169 journals.sagepub.com/home/acc

IABP protects against hydrostatic pulmonary edema during peripheral VA ECMO

Bréchot N et al. Eur Heart J: Acute Cardiovasc Care 2017

ORIGINAL RESEARCH ARTICLE

Early Left Ventricular Unloading or Conventional Approach After Venoarterial Extracorporeal Membrane Oxygenation: The EARLY-UNLOAD Randomized Clinical Trial

Min Chul Kim[®], MD, PhD; Yongwhan Lim[®], MD; Seung Hun Lee[®], MD, PhD; Yoonmin Shin, MD; Joon Ho Ahn, MD, PhD; Dae Young Hyun[®], MD, PhD; Kyung Hoon Cho[®], MD, PhD; Doo Sun Sim[®], MD, PhD; Young Joon Hong[®], MD, PhD; Ju Han Kim, MD, PhD; Myung Ho Jeong[®], MD, PhD; Yong Hun Jung, MD, PhD; In-Seok Jeong, MD, PhD; Youngkeun Ahn[®], MD, PhD

Prophylactic trial - randomized transseptal LA venting

Kim MC et al. Circulation 2023

Randomized transseptal LA venting

Randomized transseptal LA venting

Subgroup	Early N(%)	Conventional N(%)	Hazard Ratio	<i>P</i> value	<i>P</i> for interaction
Overall	27/58 (46.6%)	26/58 (44.8%)	⊢⊨ 1	0.942	
Age, years					0.164
<70	10/24 (41.7%)	8/28 (28.6%)		0.334	
≥70	17/34 (50%)	18/30 (60%)		0.325	
Sex					0.924
Female	10/19 (52.6%)	7/15 (46.7%)	⊢	0.971	
Male	17/39 (43.6%)	19/43 (44.2%)	⊢	0.965	
Origin of cardiogenic shock					0.215
Non-ischemic	7/19 (36.8%)	10/20 (50%)	⊢	0.355	
Ischemic	20/39 (51.3%)	16/38 (42.1%)	⊢ − − − − − − − − − − − − − − − − −	0.426	
Extracorporeal CPR					0.746
No	16/33 (48.5%)	13/30 (43.3%)	⊢	0.789	
Yes	11/25 (44%)	13/28 (46.4%)		0.823	
			0.20 0.50 1.0 2.0 5	Г 5.00	
			< Early better Conventional bette	r>	

Kim MC et al. Circulation 2023

Prophylactic trial - randomized transseptal LA venting

- '1^{st'} RCT 'early routine LV unloading' *vs* conventional VA ECMO
 - Early = <12 h after VA ECMO
- No reduction of all-cause mortality at short term (30 days)
- 50% crossed over for 'rescue LV unloading clear indication'
 - Increased afterload
 - LV distension with blood stagnation
 - No or minimal opening of AoV with no or minimal arterial pulse wave
 - Medically refractory pulmonary congestion

Randomized transseptal LA venting

More evidence for LV unloading ... ? ORIGINAL ARTICLE 6 2019 THE AUTHORS, PUBLISHED BY ELSEVIER ON BEHALF OF THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION. THIS IS AN OPEN ACCESS ARTICLE UNDER CULLEDE OF CARVIOLOUT FOUNDATION. 1913 13 AN UFEN ACCESS ARTICLE UNDE THE CC BY-NC-ND LICENSE (http://creativecommons.org/licenses/by-nc-nd/4.0/). Left Ventricular Unloading Is Associated With Lower Left Ventricular Unloading Is Associated Shock Treated Mortality in Patients With Cardiogenic Shock Treated Optimal Strategy and Ti-Nortality in Patients With Cardiogenic Shock Treated With in Patients With Cardiogenic Shock Treated Oxygenation With Venoarterial Extracorporeal Membrane Cohort Study Left Ventricular Unloading During Left Ventricular Unloading Is Associated With Lower Nortality in Patients With Cardiogenic Shock Treated Nortality in Patienta Extracorporeal Membrane Oxydena With Venoarterial Extracorporeal Membrane Jult Circulatory Support Jult Circulatory C Extracorporeal Membrane Oxygenation in Patients With Cardiogenic Shock Juan J. Russo, MD,^a Natasha Aleksova, MD,^b Ian Pitcher, MD,^a Etienne Couture, MD, MPH,^a Simo NUSO, MD, IVALASHA AHEKSOVA, MD, IAH FILCHET, MD, ELIEHINE COULURE, MD, MFH, SHI and Faraz, MD, a Sarah Visintini, BA, MLIS, Trevor Simard, MD, a Pietro Di Santo, MD, latasha Aleksova, MD,^b Ian Pitcher, MD, ^a MD, ^a Pietro Di Sano, MD, ^a Abdulrahman A. Al-Fares, D, ^a Sarah Visintini, BA, MLIS, ^a Trevor Simard, MD, ^c A. Reshad Garan, MD, ^c A. Dave Nagpal, Al-Fares, ND, ^b Sarah Visintini, BA, MS, ^a Koji Takeda, MD, PhD, ^c A. Reshad Garan, MD, ^c A. Dave Nagpal, MD, MH, ^c A. Dave Nagpal, MD, ^c A. Dave Nagpal, MD, MH, ^c A. Dave Nagpal, MD, ^c A. Dave Nagpal, ^c ASAIO lournal 2019 Adult Circulatory Support Simultaneous Venoarterial Extracorporeal Membrane **Oxygenation and Percutaneous Left Ventricular Decompression**

Therapy with Impella Is Associated with Improved Outcomes in Refractory Cardiogenic Shock

SANDEEP M. PATEL.* JERRY LIPINSKI, * SADEER G. AL-KINDI, * TORAL PATEL, & PETAR SARIC, & JUN LI, * FAHD NADEEM, * JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY Tu · ⊂ ↓ adas,§ Amer Alaiti,‡ Ann Phillips,‡ Benjamin Medalion,‡ Salil Deo,‡ Yakov Elgudin,‡ Marco A. Costa,‡ © 2022 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION Cull herme F, Attizzani,‡ Guilherme H, Oliveira,‡ Basar Sareyyupoglu,‡ and Hiram G. Bezerra‡ Мона

Mechanical Left Ventricular Unloading Patients Undergoing Venoarterial Extracorporeal Membrane Oxygenation E. Wilson Grandin, MD, MPH, MED, ^{a,b} Jose I. Nunez, MD, ^c Brooks Willar, MD, ^d Kevin Kennedy, MS, ^b Peter Rycus, MPH, ^e Joseph E. Tonna, MD, MS, ^{e,f} Navin K. Kapur, MD, ^g Shahzad Shaefi, MD, MPH, ^h

Early Impella Support in Postcardiac Arrest Cardiogenic Shock Complicating Acute Myocardial Infarction Improves Short- and Long-Term Survival* JACC: HEART FAILURE © 2023 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION

Timing of Active Left Ventricular Unloading in Patients on Venoard Extracorporeal Membrane Oxygenation Therapy

CLINICAL RESEARCH

Benedikt Schrage, MD, PitD^{, s,b,*} Jonas Sundermeyer, MD, ^{s,b,*} Stefan Blankenberg, MI Dennis Eckner, MD,⁴ Matthias Eden, MD,⁶ Ingo Eitel, MD,¹ Derk Frank, MD,¹ Norbert Paulus Kirchhof, MD,^{albah} Danny Kupka, MD,ⁱ Ulf Landmesser, MD,ⁱ Axel Linke, MD,ⁱ Norman Mangner, MD,^k Octavian Maniuc, MD,^m Johannes Mierke, MD,^k Sven Möbius David A. Morrow, MD, MPH,^o Marc Mourad, MD,^c Peter Nordbeck, MD,^m Martin Orbar Federico Pappalardo, MD,^{Gr} Sandeep M. Patel, MD,^a Matthias Pauschinger, MD.^d Vitto
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY © 2019 THE AUTHORS. PUBLISHED BY ELSEVIER ON BEHALF OF THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION. THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY-NC-ND LICENSE (http://creativecommons.org/licenses/by-nc-nd/4.0/). VOL. 73, NO. 6, 2019

Left Ventricular Unloading During Extracorporeal Membrane Oxygenation in Patients With Cardiogenic Shock

Juan J. Russo, MD,^a Natasha Aleksova, MD,^b Ian Pitcher, MD,^a Etienne Couture, MD, MPH,^a Simon Parlow, MD,^a Mohammad Faraz, MD,^a Sarah Visintini, BA, MLIS,^a Trevor Simard, MD,^a Pietro Di Santo, MD,^a Rebecca Mathew, MD,^a Derek Y. So, MD, MSc,^a Koji Takeda, MD, PHD,^c A. Reshad Garan, MD,^c Dimitrios Karmpaliotis, MD, PHD,^c Hiroo Takayama, MD, PHD,^c Ajay J. Kirtane, MD, SM,^c Benjamin Hibbert, MD, PHD^a

CENTRAL ILLUSTRATION Left Ventricular Unloading During Venoarterial Extracorporeal Membrane Oxygenation										
	Unlo	ading	No Unloading			Risk Ratio				
Study or Subgroup	Events	Total	Events	Total	Weight	Mantel-Haenszel, Random, 95% CI				
1.1.1 Intra-Aortic Ball	oon Pump									
Aoyama, 2014	22	35	2	3	1.2%					
Aso, 2016	330	604	708	1,046	14.3%	+				
Brechot, 2018	45	104	92	155	7.5%					
Doll, 2004	105	143	62	76	11.7%					
Kai Chen, 2018	17	38	17	22	3.9%					
Lin, 2016	144	302	110	227	10.3%	+				
Overtchouk, 2018	33	63	34	43	6.7%					
Park, 2014	21	41	30	55	4.5%					
Ro, 2014	41	60	139	193	9.7%	-				
Sakamoto, 2012	62	94	4	4	5.6%					
Tepper, 2018	15	30	22	30	3.9%					
Wang, 2013	13	41	31	46	3.0%					
Subtotal (95% CI)		1,555		1,900	82.3%	•				
Total events	848		1,251							
1.1.2 Percutaneous L	eft-Ventric	ular Sup:	port							
Akanni, 2018	16	29	100	196	5.0%					
Pappalardo, 2017	16	34	98	123	4.7%					
Patel, 2018	17	30	28	36	4.9%					
Subtotal (95% CI)		93		355	14.6%	-				
Total events	49		226							
1.1.3 Right Upper Pul	lmonary Ve	ein or Tra	Insseptal I	.eft Atria	l Cannula					
Poptsov, 2014	2	28	6	18	0.4%					
Shmack, 2017	9	20	21	28	2.7%					
Subtotal (95% CI)		48		46	3.1%					
Total events	11		27							
Total (95% CI)		1,696		2,301	100.0%	•				
Total events	908		1,504							
						0.1 0.2 0.5 1 2 5 10				
						Favors Favors				
						Unloading Not Unloading				

Russo, J.J. et al. J Am Coll Cardiol. 2019;73(6):654-62.

The association between left ventricular unloading during VA-ECMO for cardiogenic shock and all-cause mortality was assessed before and after stratification by left ventricular unloading strategy (IABP, pVAD, or RUPV or trans-septal left atrial cannula). The Mantel-Haenszel method was used to examine the overall risk ratio associated with left ventricular unloading during VA-ECMO using a random effects model. Left ventricular unloading during VA-ECMO for cardiogenic shock was associated with reduced mortality (RR: 0.79; 95% CI: 0.72 to 0.87; p < 0.00001). There was no heterogeneity in this association in relation to the specific left ventricular unloading strategy used (p = 0.47). CI = confidence interval; IABP = intra-aortic balloon pump; LA = left atrial; pVAD = percutaneous ventricular assist device; RR = relative risk; RUPV = right upper pulmonary vein; VA-ECMO = venoarterial extracorporeal membrane oxygenation.

ASAIO Journal 2019

Simultaneous Venoarterial Extracorporeal Membrane Oxygenation and Percutaneous Left Ventricular Decompression Therapy with Impella Is Associated with Improved Outcomes in Refractory Cardiogenic Shock

Sandeep M. Patel,* Jerry Lipinski,† Sadeer G. Al-Kindi,‡ Toral Patel,§ Petar Saric,§ Jun I Alaiti,‡ Ann Phillips,‡ Benjamin Medalion,‡ Salil Deo,‡ Yakov Elgud : Guilherme F. Attizzani,‡ Guilherme H. Oliveira,‡ Basar Sareyyupog

Simultaneous Venoarterial Extracorporeal Membrane Oxygenation and Percutaneous Left Ventricular Decompression Therapy with Impella Is Associated with Improved Outcomes in Refractory Cardiogenic Shock

Figure 1. A: 30 day and (B) 1 year Kaplan–Meier survival estimates demonstrating statistically significant and maintained improved cumulative survival for the ECPELLA strategy as compared with VA-ECMO strategy. VA-ECMO, venoarterial extracorporeal membrane oxygenation. full color

LV Unloading & Reduced Mortality in VA ECMO

LV Unloading & Reduced Mortality in VA ECMO

		<u>30-day</u>	mortality			
Variable	Ν	ECMELLA	VA-ECMO		HR (95% CI)	p-interaction
Age				2		NS
<52 years	167	41.4% (36/87)	46.3% (37/80)		0.81 (0.52-1.29)	
52-62 years	173	59.3% (48/81)	68.5% (63/92)	⊢−−−■ −− −† 1	0.75 (0.52-1.09)	
>62 years	170	70.1% (61/87)	74.7% (62/83)		0.80 (0.56-1.14)	
Sex						0.19
Female	120	46.7% (28/60)	63.3% (38/60)	H	0.59 (0.36-0.96)	
Male	390	60.0% (117/195)	63.6% (124/195)	F	0.85 (0.66-1.10)	
Cause of CS						0.84
AMI	321	56.6% (90/159)	61.7% (100/162)	⊢⊒ ↓I	0.80 (0.60-1.06)	
Non-ischemic	187	57.3% (55/96)	66.7% (62/91)		0.76 (0.53-1.10)	
Prior cardiac arrest						0.14
Yes	341	59.4% (101/170)	70.2% (120/171)	⊢	0.69 (0.53-0.90)	
No	169	51.8% (44/85)	50.0% (42/84)	⊢ # (1.01 (0.66-1.55)	
eCPR						0.39
Yes	172	70.2% (59/84)	73.9% (65/88)		0.90 (0.64-1.29)	
No	338	50.3% (86/171)	58.1% (97/167)		0.74 (0.55-0.99)	
Lactate						NS
<5 mmol/l	150	44.3% (31/70)	43.8% (35/80)		0.99 (0.61-1.60)	
5-10.8 mmol/l	159	61.0% (47/77)	76.8% (63/82)		0.68 (0.47-0.99)	
>10.8 mmol/l	138	67.2% (43/64)	74.3% (55/74)		0.66 (0.44-0.98)	
SAVE score						NS
>-6	130	47.8% (33/69)	59.0% (36/61)		0.70 (0.44-1.12)	
-611	143	57.3% (43/75)	63.2% (43/68)		0.85 (0.56-1.30)	
<-11	112	75.0% (48/64)	81.3% (39/48)		0.70 (0.46-1.06)	
SAPS II						NS
<52	134	43.7% (31/71)	61.9% (39/63)		0.58 (0.36-0.92)	
52-76	151	59.2% (42/71)	60.0% (48/80)		0.90 (0.59-1.36)	
>76	137	72.0% (59/82)	74.6% (39/41)		0.85 (0.57-1.27)	
Overall	510	56.9% (145/255)	63.5% (162/255)		0.79 (0.63-0.98)	0.03
			. ,			
				0.30 0.50 0.75 1.0 1.25 1.5 1.75	5	
				Favors ECMELLA	A-ECMO	

Figure 3. Association between ECMELLA use and 30-day all-cause mortality in prespecified subgroups.

LV Unloading &

Reduced Mortality in VA ECMO *comes at a price!?*

		Severe t	pleeding					
Variable	N	ECMELLA	VA-ECMO				OR (95% CI)	p-interactio
Age								NS
<52 years	165	37.9% (33/87)	32.2% (19/78)	H	_	-	1.90 (0.97-3.77)	
52-62 years	172	42.0% (34/81)	18.7% (17/91)				3.15 (1.60-6.38)	
>62 years	170	35.6% (31/87)	10.8% (9/83)		-		4.55 (2.08-10.86)	
Sex								0.05
Female	120	51.7% (31/60)	15.0% (9/60))	6.06 (2.62-15.17)	
Male	387	40.0% (67/195)	18.8% (36/192)			4	2.27 (1.43-3.65)	
Cause of CS								0.08
AMI	320	40.3% (64/159)	17.5% (24/161)				3.85 (2.27-6.68)	
Non-ischemic	187	35.4% (34/96)	23.1% (21/91)		-		1.83 (0.97-3.51)	
Prior cardiac arrest								0.43
Yes	339	42.9% (73/170)	18.9% (32/169)				3.22 (1.99-5.31)	
No	168	29.4% (25/85)	15.7% (13/83)	-	_		2.24 (1.07-4.88)	
eCPR								0.47
Yes	171	45.2% (38/84)	25.3% (22/87)	- I F	_		2.44 (1.29-4.71)	
No	336	35.1% (60/171)	13.9% (23/165)				3.34 (1.97-5.82)	
Lactate								NS
<5 mmol/l	149	27.1% (19/70)	13.9% (11/79)		_		2.30 (1.02-5.41)	
5-10.8 mmol/l	159	46.8% (36/77)	15.9% (13/82)				4.66 (2.26-10.08)	
>10.8 mmol/l	136	43.8% (28/64)	22.2% (16/72)	F	-		2.72 (1.31-5.82)	
SAVE score								NS
>-6	130	31.9% (22/69)	14.8% (9/61)		_		2.70 (1.16-6.74)	
-611	143	38.7% (29/75)	22.1% (15/68)	-	_		2.23 (1.08-4.75)	
<-11	112	54.7% (35/64)	35.6% (16/45)		_		2.19 (1.01-4.87)	
SAPS II								NS
<52	134	33.1% (24/71)	20.6% (13/63)	-	-		1.96 (0.91-4.40)	
52-76	151	26.8% (19/71)	18.8% (15/80)	(1.58 (0.74-3.46)	
>76	137	52.4% (43/82)	30.8% (16/52)		-		2.48 (1.21-5.25)	
Overall	507	38.4% (98/255)	17.9% (45/252)				2.87 (1.92-4.35)	<0.01
				rt	1	1 1		
				0.90	2.5	5.0 7.5		
				➡ ^H	igher likeliho	od in		
					ECMELLA			

Figure 4. Association between ECMELLA use and severe bleeding in prespecified subgroups.

LV Unloading &

Reduced Mortality in VA ECMO comes at a price!?

		Intervention d site related	ue to access- l ischemia				
Variable	N	ECMELLA	VA-ECMO			OR (95% CI)	p-interaction
Age							NS
<52 years	165	24.1% (21/87)	12.8% (10/78)	+		2.16 (0.97-5.12)	
52-62 years	172	24.7% (20/81)	15.4% (14/91)	+		1.80 (0.85-3.93)	
>62 years	170	16.1% (14/87)	8.4% (7/83)	+		2.08 (0.82-5.77)	
Sex							0.38
Female	120	21.7% (13/60)	16.7% (10/60)	+		1.38 (0.56-3.53)	
Male	387	21.5% (42/195)	10.9% (21/192)			2.24 (1.28-4.01)	
Cause of CS							0.66
AMI	320	21.4% (34/159)	13.0% (21/161)			1.81 (1.01-3.33)	
Non-ischemic	187	21.9% (21/96)	11.0% (10/91)	-		2.27 (1.02-5.32)	
Prior cardiac arrest							0.21
Yes	339	25.3% (43/170)	12.4% (21/169)			2.39 (1.36-4.30)	
No	168	14.1% (12/85)	12.1% (10/83)	++		1.20 (0.49-3.01)	
eCPR							0.21
Yes	171	29.8% (25/84)	12.8% (11/87)			2.93 (1.36-6.65)	
No	336	17.5% (30/171)	12.1% (20/165)	+		1.54 (0.84-2.88)	
Lactate							NS
<5 mmol/l	149	18.6% (13/70)	8.9% (7/79)	-		2.35 (0.90-6.60)	
5-10.8 mmol/l	159	20.8% (16/77)	13.4% (11/82)	+		1.69 (0.74-4.02)	
>10.8 mmol/l	136	31.3% (20/64)	11.1% (8/72)		· · · · · · · · · · · · · · · · · · ·	3.64 (1.52-9.46)	
SAVE score							NS
>-6	130	20.3% (14/69)	8.2% (5/61)	-		2.85 (1.02-9.31)	
-611	143	22.7% (17/75)	13.2% (9/68)	+		1.92 (0.81-4.84)	
<-11	112	26.6% (17/64)	6.7% (3/45)		↓ →	5.06 (1.57-22.79)	
SAPS II							NS
<52	134	15.5% (11/71)	9.5% (6/63)	(1.74 (0.62-5.34)	
52-76	151	18.3% (13/71)	15.0% (12/80)	+		1.27 (0.54-3.03)	
>76	137	30.5% (25/82)	15.4% (8/52)	H	-	2.41 (1.03-6.19)	
Overall	507	21.6% (55/255)	12.3% (31/252)			1.96 (1.22-3.20)	<0.01
					1 1 1		
				0.90	2.5 5.0 7.	5	
				-	Higher likelihood in ECMELLA		

Figure 5. Association between ECMELLA use and intervention because of access site-related ischemia in prespecified subgroups.

Mechanical Unloading in Fulminant Myocarditis LV-IMPELLA, ECMELLA, BI-PELLA, and PROPELLA Concepts

Mechanical Unloading in Fulminant Myocarditis LV-IMPELLA, ECMELLA, BI-PELLA, and PROPELLA Concepts

cardiac unloading effect !?

Tschöpe C. et al. JCTR. 2019

Mechanical Unloading in Fulminant Myocarditis PROPELLA Concept

Spillmann F. et al. EHJ. 2019

RESUSCITATION 186 (2023) 109775

Clinical paper

Left-ventricular unloading in extracorporeal cardiopulmonary resuscitation due to acute myocardial infarction – A multicenter study

Tharusan Thevathasan^{a,b,c,d,1}, Megan A. Kenny^{a,b,1}, Finn J. Krause^{a,b}, Julia Paul^{a,b}, Thomas Wurster^{a,c,d}, Sebastian D. Boie^b, Julian Friebel^{a,c,d}, Wulf Knie^a, Georg Girke^a, Arash Haghikia^{a,c,d}, Markus Reinthaler^{a,d}, Ursula Rauch-Kröhnert^{a,d}, David M. Leistner^{a,c,d}, David Sinning^{a,d}, Georg Fröhlich^a, Bettina Heidecker^{a,d}, Frank Spillmann^e, Damaris Praeger^f, Burkert Pieske^{c,d,e}, Karl Stangl^{d,f}, Ulf Landmesser^{a,c,d}, Felix Balzer^{b,c,1}, Carsten Skurk^{a,d,1,*}

ECPR – AMI ECMELLA vs VA ECMO survival

unmatched vs. propensity score-matched

Thevathasan T al. Resuscitation 2023

Early Impella Support in Postcardiac Arrest Cardiogenic Shock Complicating Acute Myocardial Infarction Improves Short- and Long-Term Survival*

OBJECTIVES: Early mechanical circulatory support with Impella may improve survival outcomes in the setting of postcardiac arrest cardiogenic shock after out-of-hospital cardiac arrest complicating acute myocardial infarction. However, the optimal timing to initiate mechanical circulatory support in this particular setting remains unclear. Therefore, we aimed to compare survival outcomes of patients supported with Impella 2.5 before percutaneous coronary intervention (pre-PCI) with those supported after percutaneous coronary intervention (post-PCI).

DESIGN: Retrospective single-center study between September 2014 and December 2019 admitted to the Cardiac Arrest Center in Marburg, Germany.

PATIENTS: Out of 2,105 patients resuscitated from out-of-hospital cardiac arrest due to acute myocardial infarction with postcardiac arrest cardiogenic shock between September 2014 and December 2019 and admitted to our regional cardiac arrest center, 81 consecutive patients receiving Impella 2.5 during admission coronary angiogram were identified.

OUTCOMES/MEASUREMENTS: Survival outcomes were compared between those with Impella support pre-PCI to those with support post-PCI. Georgios Chatzis, MD, PhD^{1,2} Birgit Markus, MD¹ Ulrich Luesebrink, MD¹ Holger Ahrens, MD¹ Dimitar Divchev, MD¹ Styliani Syntila, MD¹ Nora Scheele, MD¹ Hanna Al Eryani, MD¹ Dimitris Tousoulis, MD, PhD, FESC, FACC² Bernhard Schieffer, MD, PhD¹ Konstantinos Karatolios, MD¹

Impella 2.5 – AMI shock post cardiac arrest

pre PCI vs. post PCI

Chatzis G et al. Crit Care Med 2021

Preclinical LV unloading

Impella[®] prior to reperfusion

Animal/device	Occluded vessel	Duration of <mark>ischemia</mark> (min)	Duration of reperfusion (min)	Study design	Infarct size end point	Infarct size (%)	Study (year)
Sheep (Impella 5.0)	LAD	60	120	Group 1: reperfusion only (control) Group 2: full support from onset of ischemia (60 min) and during reperfusion Group 3: full support during reperfusion Group 4: partial support during reperfusion	Infarct percent size (TTC and Evan's blue)	Group 1: $67.2 \pm 4.6\%$ Group 2: $18.1 \pm 10\%$ Group 3: $41.6 \pm 5.8\%$ Group 4: $54.0 \pm 8\%$	Meyns <i>et al.</i> (2003)
Swine (Impella CP [®])	LAD	90	120	Group 1: reperfusion only (control) Group 2: 60 min support before reperfusion	Infarct percent size (TTC)	Group 1: 74 \pm 11% Group 2: 42 \pm 8%	Kapur et al. (2015)
Swine (Impella)	LAD	90	120	Group 1: reperfusion only (control) Group 2: 15 min support before reperfusion Group 3: 30 min support before reperfusion Group 4: 60 min support before reperfusion Group 5: 30 min reperfusion followed by LV unloading and an additional 120 min reperfusion	Reduction in infarct size [†] (TTC)	Group 1: no Group 2: no Group 3: yes Group 4: yes Group 5: no	Kapur et <i>al.</i> (2015) [†]
Swine (Impella LD)	LCx	120	120	Group 1: reperfusion only (control) Group 2: support (90 min after onset of ischemia and during reperfusion)	Infarct percent size	Group 1: 35.3 \pm 6.2% Group 2: 18.1 \pm 4.8%	Sun <i>et al.</i> (2015)
Swine (Impella CP)	LAD	90	120	Group 1: reperfusion only (control) Group 2: 15 min support before reperfusion Group 3: 30 min support before reperfusion Group 4: 30 min reperfusion followed by 90 min reperfusion with support	Infarct percent size (TTC and Evan's blue)	Group 1: $62.2 \pm 1.7\%$ Group 2: NS [‡] Group 3: $33.3 \pm 5\%$ Group 4: NS [‡]	Esposito et al. (2018)
Canine (Impella CP)	LAD (+LCx)	180	60	Group 1: sham (thoracotomy only) Group 2: reperfusion only (control) Group 3: partial support (60 min after onset of ischemia to 60 min after reperfusion) Group 4: full support (60 min after onset of ischemia to 60 min after reperfusion)	Infarct percent size (TTC)	Group 1: NA Group 2: $16.3 \pm 2.6\%$ Group 3: $8.5 \pm 4.3\%$ Group 4: $2.1 \pm 1.6\%$	Saku et <i>al.</i> (2018)
Swine (Impella CP)	LAD	120	180	Group 1: 30 min continued occlusion (control) Group 2: 30 min Impella support before reperfusion Group 3: 30 min extracorporeal membrane oxygenation support before reperfusion	Infarct percent size (TTC and Evan's blue)	Group 1: 52 \pm 15% Group 2: 34 \pm 6% Group 3: NS	Briceno e <i>t al.</i> (2019)
Swine (Impella CP)	LAD	60	120	Group 1: reperfusion only (control) Group 2: support only before reperfusion Group 3: support with immediate reperfusion	Infarct percent size (TTC and Evan's blue)	Group 1: $54.7 \pm 20.3\%$ Group 2: $43.3 \pm 24.6\%$ Group 3: $22.1 \pm 13.4\%$	Ko et al. (2020)

[†]This preclinical study was reported in a TCT presentation. An additional metric of infarct size reduction, infarct size as percentage of area at risk, was presented as a figure accompanying the presentation; however, exact measurements were not provided. Per the figure bar charts, infarct size as a percentage of area-at-risk was ~67% in group 1, ~60% in group 2, ~30% in group 3, ~40% in group 4 and ~55% in group 5, indicating that best infarct size outcome was achieved with 30 min of unloading prior to reperfusion.

[‡]Infarct percent sizes in group 2 and 4 were not provided; however, the authors state that unloading followed by perfusion in these two groups failed to reduce infarct size compared with reperfusion alone. LAD: Left anterior descending; LCx: Left circumflex; LV: Left ventricle; NA: Not available; NS: No significant reduction; TTC: Triphenyltetrazolium chloride.

Impella 2.5 – AMI shock post cardiac arrest

pre PCI vs. post PCI

Chatzis G et al. Crit Care Med 2021

JACC: HEART FAILURE © 2023 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER

CLINICAL RESEARCH

Timing of Active Left Ventricular Unloading in Patients on Venoarterial Extracorporeal Membrane Oxygenation Therapy

Benedikt Schrage, MD, PHD,^{a,b,*} Jonas Sundermeyer, MD,^{a,b,*} Stefan Blankenberg, MD,^{a,b} Pascal Colson, MD,^c Dennis Eckner, MD,^d Matthias Eden, MD,^e Ingo Eitel, MD,^{b,f} Derk Frank, MD,^{b,g} Norbert Frey, MD,^e Tobias Graf, MD,^{b,f} Paulus Kirchhof, MD,^{a,b,h} Danny Kupka, MD,ⁱ Ulf Landmesser, MD,^j Axel Linke, MD,^k Nicolas Majunke, MD,^l Norman Mangner, MD,^k Octavian Maniuc, MD,^m Johannes Mierke, MD,^k Sven Möbius-Winkler, MD,ⁿ David A. Morrow, MD, MPH,^o Marc Mourad, MD,^c Peter Nordbeck, MD,^m Martin Orban, MD,^p Federico Pappalardo, MD,^{q,r} Sandeep M. Patel, MD,^s Matthias Pauschinger, MD,^d Vittorio Pazzanese, MD,^{q,t} Darko Radakovic, MD,^u P. Christian Schulze, MD, PHD,ⁿ Clemens Scherer, MD,^p Robert H.G. Schwinger, MD,^v Carsten Skurk, MD,^j Holger Thiele, MD,¹ Anubodh Varshney, MD,^o Lukas Wechsler, MD,^v Dirk Westermann, MD^w

Schrage B et al. J Am Coll Cardiol HF 2023

Schrage B et al. J Am Coll Cardiol HF 2023

CENTRAL ILLUSTRATION Association Between Timing of Active LV Unloading and 30-Day Mortality

The y-axis displays the interval between initiation of active left ventricular (LV) unloading and venoarterial extracorporeal membrane oxygenation (VA-ECMO) implantation in hours, with negative values indicating initiation of active LV unloading before VA-ECMO implantation. The x-axis displays the HR for the outcome of 30-day mortality based on an adjusted Cox regression model.

Schrage B et al. J Am Coll Cardiol HF 2023

ORIGINAL ARTICLE

Optimal Strategy and Timing of Left Ventricular Venting During Veno-Arterial Extracorporeal Life Support for Adults in Cardiogenic Shock

A Systematic Review and Meta-Analysis

Abdulrahman A. Al-Fares, MD*; Varinder K. Randhawa, MD, PhD*; Marina Englesakis, MLIS; Michael A. McDonald, MD; A. Dave Nagpal, MD, MHSc; Jerry D. Estep, MD; Edward G. Soltesz, MD, MPH; Eddy Fan, MD, PhD

Circulation: Heart Failure 2019

ORIGINAL ARTICLE

Optimal Strategy and Timing of Left Ventricular Venting During Veno-Arterial Extracorporeal Life Support for Adults in Cardiogenic Shock

A Systematic Review and Meta-Analysis

Abdulrahman A. Al-Fares, MD*; Varinder K. Randhawa, MD, PhD*; Marina Englesakis, MLIS; Michael A. McDonald, MD; A. Dave Nagpal, MD, MHSc; Jerry D. Estep, MD; Edward G. Soltesz, MD, MPH; Eddy Fan, MD, PhD

Risk Ratio IV. Random. 95% CI

Circulation: Heart Failure 2019

ORIGINAL ARTICLE

Risk Ratio IV, Random, 95% CI Optimal Strategy and Timing of Left Ventricular Venting During Veno-Arterial Extracorporeal Life Support for Adults in Cardiogenic Shock A Systematic Review and Meta-Analysis Abdulrahman A. Al-Fares, MD*; Varinder K. Randhawa, MD, PhD*; Marina Englesakis, MLIS; Michael A. McDonald, MD; A. Dave Nagpal, MD, MHSc; Jerry D. Estep, MD; Edward G. Soltesz, MD, MPH; Eddy Fan, MD, PhD Early (<12h) LV venting (IABP, Impella or other percutaneous or surgical technique) is associated with increased weaning succes and reduced 30d mortality. ... was associated with longer duration of ECLS and mechanical ventilation, without impacting overall ICU length of stay r.34, df = 3 (P = 0.02); $l^2 = 71\%$ ect. Z = 0.64 (P = 0.52)Total (95% CI) 1453 1637 100.0% 0.86 [0.77, 0.96] Total events 755 971 Heterogeneity. Tau² = 0.02; Chi² = 31.22, df = 16 (P = 0.01); I^2 = 49% 01 0'2 0.5 10 Test for overall effect: Z = 2.67 (P = 0.008) Favours VA-ECLS + LV vent Favours VA-ECLS alone Test for subgroup differences: $Chi^2 = 6.42$, df = 3 (P = 0.09), $I^2 = 53.2\%$ Footnotes (1) Propensity matched (2) Propensity matched (3) Predominantly IABP + LA vents in 3 patients (4) Predominantly Impella + surgical vent in 17 patients (LV, PA, LA) and IABP in 15 patients (5) Predominantly IABP + LV vent in 6 patients (at RUPV or atrial septostomy) (6) Predominantly LV surgical vent + IABP in 17 patients

Circulation: Heart Failure 2019

LV Mechanical Unloading & Outcomes During VA ECMO

Grandin EW et al. JACC 2022

LV Mechanical Unloading & Outcomes During VA ECMO

- --- Mechanical Unloading ----- pVAD Use
- + IABP Use

VA-ECMO Cases

Grandin EW et al. JACC 2022

Left Ventricular Unloading With Impella Versus IABP in Patients With VA-ECMO: A Systematic Review and Meta-Analysis

Kruti D. Gandhi, MD^{a,1}, Errol C. Moras, MD^{a,1}, Shailesh Niroula, MBBS^b, Persio D. Lopez, MD MSHS^c, Devika Aggarwal, MBBS^c, Kirtipal Bhatia, MD^c, Yoni Balboul, MD^a, Joseph Daibes, DO^c, Ashish Correa, MD^d, Abel Casso Dominguez, MD^c, Edo Y. Birati, MD^e, David A. Baran, MD^f, Gregory Serrao, MD^d, Kiran Mahmood, MD^d, Saraschandra Vallabhajosyula, MD, MSc^g, and Arieh Fox, MD^{d,*}

> Venoarterial extracorporeal membrane oxygenation (VA-ECMO) use for circulatory support in cardiogenic shock results in increased left ventricular (LV) afterload. The use of concomitant Impella or intra-aortic balloon pump (IABP) have been proposed as adjunct devices for LV unloading. The authors sought to compare head-to-head efficacy and safety outcomes between the 2 LV unloading strategies. We conducted a search of Medline, EMBASE, and Cochrane databases to identify studies comparing the use of impelia to IABP in patients on VA-ECMO. The primary outcome of interest was in-hospital mortality. The secondary outcomes included transition to durable LV assist devices/cardiac transplantation, stroke, limb ischemia, need for continuous renal replacement therapy, major bleeding, and hemolysis. Pooled risk ratios (RRs) with 95% confidence interval and heterogeneity statistic I^2 were calculated using a random-effects model. A total of 7 observational studies with 698 patients were included. Patients on VA-ECMO unloaded with Impella vs IABP had similar risk of short-term all-cause mortality, defined as either 30day or in-hospital mortality- 60.8% vs 64.9% (RR 0.93 [0.71 to 1.21], $I^2 = 71\%$). No significant difference was observed in transition to durable LV assist devices/cardiac transplantation, continuous renal replacement therapy initiation, stroke, or limb ischemia between the 2 strategies. However, the use of VA-ECMO with Impella was associated with increased risk of major bleeding (57.2% vs 39.7%) (RR 1.66 [1.12 to 2.44], I² = 82%) and hemolysis (31% vs 7%) (RR 4.61 [1.24 to 17.17], I2 = 66%) compared with VA-ECMO, along with IABP. In conclusion, in patients requiring VA-ECMO for circulatory support, the concomitant use of Impella or IABP had comparable short-term mortality. However, Impella use was associated with increased risk of major bleeding and hemolysis. © 2023 Elsevier Inc. All rights reserved. (Am J Cardiol 2023;208:53–59)

Ghandi KD et al. Am J Cardiol 2023

Figure 4. Meta-analysis of LV unloading with VA-ECMO+Impella versus VA-ECMO+IABP.

Ghandi KD et al. Am J Cardiol 2023

Α									
Study	Year	ECMO+Ir Events	npella Total	ECMO Events	+IABP Total	Mortality	RR with 95% Cl	Weight	
			Total					(/4)	
Piechura et al	2020	12	19	12	16		0.84 [0.54, 1.31]	13.18	
Char et al	2021	51	72	29	68		— 1.66 [1.21, 2.27]	16.16	
Au et al	2021	10	14	31	52			14.17	
Nakajima et al	2021	30	49	64	91		0.87 [0.67, 1.13]	17.35	
Unoki et al	2021	14	30	65	82 —	- -	0.59 [0.39, 0.88]	13.68	
Takahashi et al	2022	13	22	83	119		0.85 [0.59, 1.22]	14.91	
Shibasaki et al	2022	9	23	23	41 —		0.70 [0.39, 1.24]	10.55	
Overall							0.93 [0.71, 1.21]		
Heterogeneity: T	$r^2 = 0.09, I$	² = 71.77%, ⊦	l ² = 3.54						
Test of $\theta_{i} = \theta_{i}$: Q	Test of $A = A : O(6) = 20.85 \text{ n} = 0.00$								
Test of $\theta = 0$; $z = -0.56$, $p = 0.58$					Favors ECMO+Impella		Favors ECMO+IABP		
						0.5 1	2		
Random-effects [DerSimoni	an–Laird mod	lel						

В

_		ECMO+I	mpella	ECMO+	IABP				RR	Weight
Study	Year	Events	Total	Events	Total		LVAD/Hea	rt transplant	with 95% Cl	(%)
Piechura et al	2020	2	19	3	16		•		- 0.56 [0.11, 2.96	6] 9.97
Char et al	2021	6	72	12	68	-	•	<u> </u>	0.47 [0.19, 1.19	9] 32.35
Nakajima et al	2021	10	49	18	91		_	- •	1.03 [0.52, 2.06	6] 57.68
Overall									0.75 [0.45, 1.27	7]
Heterogeneity:	$t^2 = 0.00$	$I_{2} = 0.0$	0%, H²	= 1.00						
Test of $\theta_i = \theta_i$: C	(2) = 1.	90, p = 0	.39							
Test of $\theta = 0$: $z = -1.05$, $p = 0.29$						Favors E	CMO+Impel	la Favors	ECMO+IABP	
		•			_	0.12 (0.25 0.5	1 2	_	

Random-effects DerSimonian-Laird model

Ghandi KD et al. Am J Cardiol 2023

Intensive Care Med (2024) 50:209–221 https://doi.org/10.1007/s00134-023-07278-3

SYSTEMATIC REVIEW

Mechanical circulatory support for cardiogenic shock: a network meta-analysis of randomized controlled trials and propensity score-matched studies

Christopher Jer Wei Low¹, Ryan Ruiyang Ling¹, Michele Petrova Xin Ling Lau¹, Nigel Sheng Hui Liu¹, Melissa Tan², Chuen Seng Tan^{1,3}, Shir Lynn Lim^{1,4,5}, Bram Rochwerg^{6,7}, Alain Combes^{8,9}, Daniel Brodie¹⁰, Kiran Shekar^{11,12,13,14}, Susanna Price^{15,16}, Graeme MacLaren^{1,2}, and Kollengode Ramanathan^{1,2*}

Low CJW et al. Am J Cardiol 2023

Low CJW et al. Am J Cardiol 2023

Another plea for temporary MCS ...

Treatment	MCS de (All-	evices vs. no M cause Mortalit	ICS y) OR	95% CI	
ECMO+IABP			0.54	[0.33; 0.86]	
ECMO+mVAD		-	0.61	[0.34; 1.10]	
mVAD	+		0.70	[0.52; 0.94]	
IABP	-+		0.77	[0.62; 0.95]	
cVAD		<u> </u>	0.90	[0.34; 2.39]	
ECMO		-	0.99	[0.75; 1.30]	
No MCS			1.00		
mVAD+IABP		•	4.52	[0.17; 120.26]	
Γ			l		
0.1	0.5 1	125	130		
Favours MCS Favours no MCS					
Fig. 3 Network forest plot demonstrating network estimates for all outcomes. While the IABP and mVAD estimates demonstrate significance here, we derived the final estimates from direct and indirect estimates, respectively, for those outcomes, based on our supplemental Methods					

COMMENT

Open Access

Critical Care

Mechanical circulatory support in cardiogenic shock: microaxial flow pumps for all and VA-ECMO consigned to the museum?

Daniel De Backer^{1*}, Dirk W. Donker^{2,3}, Alain Combes⁴, Alexandre Mebazaa⁵, Jacob E. Moller^{6,7} and Jean-Louis Vincent⁸

Table 1 Main differences in the three largest randomized controlled trials (RCTs) on mechanical circulatory support (MCS) in cardiogenic shock

	Ostadal et al. [4]	Thiele et al. [5]	Moller et al. [9]
MCS type	VA-ECMO	VA-ECMO	MFP
Patients	SCAI D-E	SCAI C-E (SCAI C 53%)	SCAI C-E (SCAI C 55%)
Cardiac arrest exclusions (proportion of included patients who were post-CA)	Comatose after cardiac arrest excluded (post-CA 11%)	CPR > 45 min excluded (post-CA 78%)	Comatose after cardiac arrest excluded (post-CA 20%)
Mechanical ventilation at inclusion	70%	88%	18%
Unloading strategy	22%	6%	Not relevant
Rescue MCS in control group	Rescue VA-ECMO 39%	Rescue VA-ECMO 13% Rescue MFP 13%	Rescue VA-ECMO 13%
Additional MCS in intervention group	0%	0%	Rescue VA-ECMO 12% Other MFP 16%

Incidence and Implications of Left Ventricular Distention During Venoarterial Extracorporeal Membrane Oxygenation Support

Lauren K. Truby,* Koji Takeda,† Christine Mauro,‡ Melana Yuzefpolskaya,* Arthur R. Garan,* Ajay J. Kirtane,* Veli K. Topkara,* Darryl Abrams,* Daniel Brodie,* Paolo C. Colombo,* Yoshifumi Naka,† and Hiroo Takayama†

EC-VAD: Combined Use of Extracorporeal Membrane Oxygenation and Percutaneous Microaxial Pump Left Ventricular Assist Device

Olutosin J. Akanni,* Koji Takeda,* Lauren K. Truby,† Paul A. Kurlansky,* Codruta Chiuzan,‡ Jiho Han,* Veli K. Topkara,† Melana Yuzefpolskaya,† Paolo C. Colombo,† Dimitrios Karmpaliotis,† Jeffery W. Moses,† Yoshifumi Naka,* A. Reshad Garan,† Ajay J. Kirtane,† and Hiroo Takayama*

Pulmonary artery diastolic P (= LVEDP)

Mechanistic insights – physiological reasoning

RV - LV interdependence in ECMO

Donker DW et al. ASAIO J 2021

IMPOSSIBLE without ... RV-LV interdependency under ECMO

Mechanistic insights – physiological reasoning

RV - LV interdependence in ECMO

Donker DW et al. ASAIO J 2021

VA ECMO versus native heart

competition in peripheral VA ECMO

Courtesy of Alois Philipp, Regensburg

Available online at ScienceDirect

journal homepage: www.elsevier.com/locate/resuscitation

EUROPEAN RESUSCITATION COUNCIL

Editorial

Left ventricular unloading during VA-ECMO: A Gordian knot of physiology

We suggest that the best way to break the Gordian knot of unloading is to refine our understanding of VA-ECMO physiology. Left ventricular unloading has been theoretically proposed to have two main physiologic benefits in patients on VA-ECMO: (1) reduction in left ventricular afterload and (2) a reduction of LV preload and, consequently, pulmonary vascular pressures – particularly pulmonary capillary wedge pressure. However, these theoretical benefits are not supported by strong physiologic data.

Rajat Kalra et al. Resuscitation 2024

Gordian knot ?

Rajat Kalra et al. Catheter Cardiovasc Interv. 2024

Discrepancy between *theory* and *practice* ?

CENTRAL ILLUSTRATION 1 Invasive and theoretical left ventricular pressure volume loops at high and low VA-ECMO support.

Rajat Kalra et al. Catheter Cardiovasc Interv. 2024

2024, Vol. 39(1S) 5S-12S

Article reuse guidelines:

sagepub.com/journals-permissions DOI: 10.1177/02676591241237639 journals.sagepub.com/home/prf

© The Author(s) 2024

Perfusion

S Sage

The physiology of venoarterial extracorporeal membrane oxygenation - A comprehensive clinical perspective

Libera Fresiello,¹ Jeannine A.J. Hermens,² Lara Pladet,² Christiaan L. Meuwese^{3,4} and Dirk W. Donker^{1,2}

Left ventricular volume

2024, Vol. 39(1S) 5S-12S

© The Author(s) 2024

Article reuse guidelines:

sagepub.com/journals-permissions DOI: 10.1177/02676591241237639 journals.sagepub.com/home/prf

Perfusion

S Sage

The physiology of venoarterial extracorporeal membrane oxygenation - A comprehensive clinical perspective

Libera Fresiello,¹ Jeannine A.J. Hermens,² Lara Pladet,² Christiaan L. Meuwese^{3,4} and Dirk W. Donker^{1,2}

Left ventricular volume

Cardiac (un-)loading conditions under VA ECMO

an intricate patient - device interaction

Ezad SM et al. Circulation 2023

Cardiac mechanical support The *ideal* device !?

Burkhoff D. et al. Catheterization and Cardiovascular Interventions 2012

European Heart Journal (2019) **40**, 2671–2683 European Society doi:10.1093/eurheartj/ehz363

Management of cardiogenic shock complicating myocardial infarction: an update 2019

Holger Thiele^{1,2}*, E. Magnus Ohman³, Suzanne de Waha-Thiele⁴, Uwe Zeymer⁵, and Steffen Desch^{1,2}

Multicenter RCT – ECMELLA - VA ECMO

REMAP ECMO

clinicaltrials.gov NCT 05913622

Dutch ECLS Study group

The hemodynamics of VA ECMO

an intricate patient - device interaction

Take home messages

LV unloading trials - VA ECMO & MCS

- Experimental data provide ...
 rechanistic rationale
- Epidemiological evidence ...
 - ✓ hypothesis generating
 - ✓ backbone for daily clinical decision making
 - LV unloading/ adjunct LV unloading
 - early & tailored
 - careful weighing considerable risks & benefits
 - limited group of well-selected patients
- Bedside reasoning remains crucial ...
 - ✓ points to complexity of individual cases
 - ✓ underscores: NOT one size fits all !!!

Thank you !

University of Twente – TechMed Center

UNIVERSITY | **TECHMED** OF TWENTE. | **CENTRE**