

Mechanical CPR: Who? When? How?

Guillaume Debaty Professor of Emergency Medicine University Grenoble Alps, France gdebaty@chu-grenoble.fr

Conflicts of interest

Research support:

Stryker, Zoll, Nonin, Massimo, Zoll, Advanced CPR solution

History of technology

Invention of steam engine: 1731

1830 When a Horse Raced Against a Locomotive During the Industrial Revolution

Fig. 9. Rentsch Cardiac Pres

Manual CPR: 1961

Two main designs

Piston-based devices

Load-band devices

RCT with mechanical CPR

Mechanical versus manual chest compression for out-of-hospital cardiac arrest (PARAMEDIC): a pragmatic, cluster randomised controlled trial

Gavin D Perkins, Ranjit Lall, Tom Quinn, Charles D Deakin, Matthew W Cooke, Jessica Horton, Sarah E Lamb, Anne-Marie Slowther, Malcolm Woollard, Andy Carson, Mike Smyth, Richard Whitfield, Amanda Williams, Helen Pocock, John J M Black, John Wright, Kyee Han, Simon Gates, PARAMEDIC trial collaborators* Lancet. 2015;385:947–55

Original Investigation

Mechanical Chest Compressions and Simultaneous Defibrillation vs Conventional Cardiopulmonary Resuscitation in Out-of-Hospital Cardiac Arrest The LINC Randomized Trial

Sten Rubertsson, MD, PhD; Erik Lindgren, MD; David Smekal, MD, PhD; Ollie Östlund, PhD; Johan Silfverstolpe, MD; Robert A. Lichtveld, MD, PhD; Rene Boomars, MPA; Björn Ahlstedt, MD; Gunnar Skoog, MD; Robert Kastberg, MD; David Halliwell, RN; Martyn Box, RN; Johan Herlitz, MD, PhD; Rolf Karlsten, MD, PhD

JAMA. 2014;311:53-61

Resuscitation Volume 85, Issue 6, June 2014, Pages 741-748

Clinical Paper

Manual vs. integrated automatic load-distributing band CPR with equal survival after out of hospital cardiac arrest. The randomized CIRC trial $\Rightarrow \Rightarrow \Rightarrow$

Lars Wik ^a \approx \boxtimes , Jan-Aage Olsen ^{a, b}, David Persse ^c, Fritz Sterz ^d, Michael Lozano Jr. ^{e, f}, Marc A. Brouwer ^g, Mark Westfall ^{h, i}, Chris M. Souders ^c, Reinhard Malzer ^j, Pierre M. van Grunsven ^k, David T. Travis ^e, Anne Whitehead ^I, Ulrich R. Herken ^m, E. Brooke Lerner ⁿ

Resuscitation 82 (2011) 702-706

Clinical paper

A pilot study of mechanical chest compressions with the LUCASTM device in cardiopulmonary resuscitation^{\ddagger}

David Smekal^{a,*}, Jakob Johansson^{a,b}, Tibor Huzevka^a, Sten Rubertsson^a

^a Department of Surgical Sciences - Anaesthesiology & Intensive Care, Uppsala University, SE-751 85 Uppsala, Sweden
^b Centre of Emergency Medicine, SE-751 85 Uppsala, Sweden

Clinical Paper

Manual vs. integrated automatic load-distributing band CPR with equal survival after out of hospital cardiac arrest. The randomized CIRC trial $\Rightarrow \Rightarrow \Rightarrow$

Lars Wik ^a \approx 🖾, Jan-Aage Olsen ^{a, b}, David Persse ^c, Fritz Sterz ^d, Michael Lozano Jr. ^{e, f}, Marc A. Brouwer ^g, Mark Westfall ^{h, i}, Chris M. Souders ^c, Reinhard Malzer ^j, Pierre M. van Grunsven ^k, David T. Travis ^e, Anne Whitehead ¹, Ulrich R. Herken ^m, E. Brooke Lerner ⁿ

Resuscitation 2014

4231 patients

Mechanical CPRManual CPRSurvival at
30DImage: Constraint of the second s

9,4%

Odd Ratio 1.06 (95% CI 0.83, 1.37) 11%

costcs.com

Original Investigation

Mechanical Chest Compressions and Simultaneous Defibrillation vs Conventional Cardiopulmonary Resuscitation in Out-of-Hospital Cardiac Arrest The LINC Randomized Trial

Sten Rubertsson, MD, PhD; Erik Lindgren, MD; David Smekal, MD, PhD; Ollie Östlund, PhD; Johan Silfverstolpe, MD; Robert A. Lichtveld, MD, PhD; Rene Boomars, MPA; Björn Ahlstedt, MD; Gunnar Skoog, MD; Robert Kastberg, MD; David Halliwell, RN; Martyn Box, RN; Johan Herlitz, MD, PhD; Rolf Karlsten, MD, PhD

Mechanical CPR

Survival at 4h

23,6%

Différence entre traitement - 0.05 (95% Cl - 3.3, 3.2) 23,7%

costcs.com

Mechanical versus manual chest compression for out-of-hospital cardiac arrest (PARAMEDIC): a pragmatic, cluster randomised controlled trial

Gavin D Perkins, Ranjit Lall, Tom Quinn, Charles D Deakin, Matthew W Cooke, Jessica Horton, Sarah E Lamb, Anne-Marie Slowther, Malcolm Woollard, Andy Carson, Mike Smyth, Richard Whitfield, Amanda Williams, Helen Pocock, John J M Black, John Wright, Kyee Han, Simon Gates, PARAMEDIC trial collaborators*

4470 patients

costcs.com

Available online at ScienceDirect

In hospital cardiac arrest

journal homepage: www.elsevier.com/locate/resuscitation

Clinical paper

The association between mechanical CPR and outcomes from in-hospital cardiac arrest: An observational cohort study

Conor Crowley^{*a,b,c,**}, Justin Salciccioli^{*b,d*}, Wei Wang^{*d,e*}, Tomoyoshi Tamura^{*f*},

2232 patients with mechanical CPR 108 911 with manual CPR

Survival to discharge: 11,8% mechanical CPR 16,9% Manual CPR P<0,001

Fig. 3 - Forest plot of ORs for survival to discharge of mechanical vs manual CPR.

Survival with good neurologic outcome

	Manual		Mechanical		Odds Ratio		Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M–H, Random, 95% Cl	
Axelsson 2006	9	169	14	159	5.5%	0.58 [0.24, 1.39]		
Buckler 2016	5967	63056	984	17625	12.2%	1.77 [1.65, 1.90]	•	
Chen 2021	12	273	15	279	6.1%	0.81 [0.37, 1.76]		
Gao 2016	2	15	5	31	2.0%	0.80 [0.14, 4.70]		
Gonzales 2019	21	176	10	176	6.1%	2.25 [1.03, 4.93]		
Hallstrom 2006	28	373	12	394	6.9%	2.58 [1.29, 5.16]		
Mistraletti 2023	72	1061	33	305	9.4%	0.60 [0.39, 0.93]		
Newberry 2018	129	1020	29	763	9.6%	3.66 [2.42, 5.55]		
Perkins 2015	168	2819	77	1652	10.9%	1.30 [0.98, 1.71]		
Rubertsson 2014	100	1289	108	1300	10.9%	0.93 [0.70, 1.23]		
Tantarattanapong 2022	19	193	0	34	0.9%	7.71 [0.45, 130.76]		
Wik 2014	112	2132	87	2099	10.9%	1.28 [0.96, 1.71]		
Zeiner 2015	92	655	21	283	8.7%	2.04 [1.24, 3.35]		
Total (95% CI)		73231		25100	100.0%	1.41 [1.07, 1.84]	◆	
Total events	6731		1395					
Heterogeneity: Tau ² = 0.16; Chi ² = 74.25, df = 12 (P < 0.00001); I ² = 84%								
Test for overall effect: Z =	= 2.46 (P	= 0.01)					Eavours Mechanical Favours Manual	

Medicine (Baltimore). 2024 Feb 23;103(8):e37294.

Why it's not working - Quality of CPR

Clinical Paper

Manual vs. integrated automatic load-distributing band CPR with equal survival after out of hospital cardiac arrest. The randomized CIRC trial $\Rightarrow \Rightarrow \Rightarrow$

Lars Wik ^a \approx \boxtimes , Jan-Aage Olsen ^{a, b}, David Persse ^c, Fritz Sterz ^d, Michael Lozano Jr. ^{e, f}, Marc A. Brouwer ^g, Mark Westfall ^{h, i}, Chris M. Souders ^c, Reinhard Malzer ^j, Pierre M. van Grunsven ^k, David T. Travis ^e, Anne Whitehead ^l, Ulrich R. Herken ^m, E. Brooke Lerner ⁿ

CCF in manual CPR group = 79%

Original Investigation

Mechanical Chest Compressions and Simultaneous Defibrillation vs Conventional Cardiopulmonary Resuscitation in Out-of-Hospital Cardiac Arrest The LINC Randomized Trial

Sten Rubertsson, MD, PhD; Erik Lindgren, MD; David Smekal, MD, PhD; Ollie Östlund, PhD; Johan Silfverstolpe, MD; Robert A. Lichtveld, MD, PhD; Rene Boomars, MPA; Björn Ahlstedt, MD; Gunnar Skoog, MD; Robert Kastberg, MD; David Halliwell, RN; Martyn Box, RN; Johan Herlitz, MD, PhD; Rolf Karlsten, MD, PhD CCF in manual CPR group = 78%

Why it's not working - too long

A training question?

Table 1

CPR quality metrics for the years (2012) and (2013).

2012 and 2013 LUCAS and CPR Process			\frown	
	2012 (<i>n</i> =61)	2013 (<i>n</i> = 71)	p Value	
Chest compression interruption prior to first mechanical compression (s)	21(15,31)	7(4,12)	<0.001	
Longest chest compression interruption during resuscitation attempt (s)	25(20,35)	13(10,20)	<0.001	
Proportion of cases in which longest interruption was for mechanical CPR device application	74%	31%	<0.001	
Compression fraction	0.90 (0.88, 0.93)	0.95 (0.93, 0.96)	< 0.001	
Interruption for mechanical CPR device application as proportion of total "hands off" time	18%(12%,32%)	10%(6%,18%)	<0.001	

Continuous variables presented as median (25th, 75th percentile).

M. Levy et al. / Resuscitation 92 (2015) 32–37

LUCAS Minimizes Hands-Off Time

Cumulative Interruption Time: 00:00 Manual CPR Interruptions: 0

Available online at ScienceDirect
Resuscitation

journal homepage: www.elsevier.com/locate/resuscitation

Why it's not working – too traumatic

Review

Safety of mechanical and manual chest compressions in cardiac arrest patients: A systematic review and meta-analysis

Yanxia Gao^{a,1}, Tongwen Sun^{b,1}, Ding Yuan^a, Huoyan Liang^b, Youdong Wan^c,

Are there still some benefit? patients who can benefit?

Mechanical versus manual chest compression CPR under ground ambulance transport conditions

Julia Fox¹, René Fiechter², Peter Gerstl^{2,3}, Alfons Url¹, Heinz Wagner³, Thomas F. Lüscher⁴, Urs Eriksson^{2,3} & Christophe A. Wyss⁴

Acute Cardiac Care, March 2013; 15(1): 1–6

Figure 1. LUCAS[™]2 performing mechanical CPR during ambulance transport.

LUCAS Versus Manual Chest Compression During Ambulance Transport: A Hemodynamic Study in a Porcine Model of Cardiac Arrest

Aurora Magliocca, MD; Davide Olivari, MBiol; Daria De Giorgio, MBiol; Davide Zani, MVet; Martina Manfredi, MVet; Antonio Boccardo, MVet; Alberto Cucino, MD; Giulia Sala, MVet; Giovanni Babini, MD; Laura Ruggeri, MD; Deborah Novelli, MBiol; Markus B Skrifvars, MD, PhD; Bjarne Madsen Hardig, RN, PhD; Davide Pravettoni, MVet; Lidia Staszewsky, MD; Roberto Latini, MD; Angelo Belloli, MVet; Giuseppe Ristagno, MD, PhD

Mountain rescue cardiopulmonary resuscitation: a comparison between manual and mechanical chest compressions during manikin cardio resuscitation

Oyvind Thomassen,¹ Sven Christjar Skaiaa,^{2,3} Jorg Assmuss,⁴ Øyvind Øster Jon Kenneth Heltne,^{1,5} Lars Wik,^{6,7} Guttorm Brattebo^{1,8}

www.

For which patients: We should (must) do it

Neurologic Recovery From Profound Accidental Hypothermia After 5 Hours of Cardiopulmonary Resuscitation

Yvonnick Boue, MD^{1,2,3}; Julien Lavolaine, MD¹; Pierre Bouzat, MD, PhD^{1,2,3}; Sophie Matraxia, MD⁴; Olivier Chavanon, MD, PhD⁵; Jean-François Payen, MD, PhD^{1,2,3}

Crit Care Med. 2014;42:e167-70.

Available online at ScienceDirect
Resuscitation

journal homepage: www.elsevier.com/locate/resuscitation

Holger Gässler^{a,*}, Lara Kurka^b, Stefan Rauch^b, Stephan Seewald^c, Martin Kulla^a,

Survival 30D

EUROPEAN RESUSCITATION COUNCIL

Check for updates

du graphique

For prolonged CPR

Clinical paper

0

Mechanical chest compression devices under special circumstances

Manual CPRMechanical CPR

 Matthias Fischer^b

 5

 4

 3

 2

 1

CPC 1-2

Lancet. 2020;396:1807-1816

Advanced reperfusion strategies for patients with out-ofhospital cardiac arrest and refractory ventricular fibrillation (ARREST): a phase 2, single centre, open-label, randomised controlled trial

Demetris Yannopoulos, Jason Bartos, Ganesh Raveendran, Emily Walser, John Connett, Thomas A Murray, Gary Collins, Lin Zhang, Rajat Kalra, Marinos Kosmopoulos, Ranjit John, Andrew Shaffer, R J Frascone, Keith Wesley, Marc Conterato, Michelle Biros, Jakub Tolar, Tom P Aufderheide

Mechanical CPR was an inclusion criteria

HELMSLE'

Survival to discharge Primary outcome

43% (6/15 patients)

risk difference 36%, 3·7– 59·2; 0·9861 posterior probability of ECMO superiority 7% (1/15 patients)

СНЦ

www.paris-ecostcs.com

/23

Change in wave form to improve hemodynamic

	Trapezoid	Sinusoid	P value
SAP (mmHg)	79 (66,86)	62 (58,70)	0.007
Carotid blood flow (ml/min)	52 (20,66)	37 (21,41)	0.04
Cortical cerebral microcirculation (% of baseline)	52 (20,66)	26 (17,43)	0.005

Maybe some improvement to come...

Bundling Technology

Gravity Study

Combination of head-up position, active compression-decompression mechanical cardiopulmonary resuscitation and impedance threshold device to improve outcomes in out-of-hospital cardiac arrest. A prospective controlled quasi-experimental trial

Primary Endpoint - Max ETCO2 during CPR

59 patients

63 patients

Control Head and torso elevation

30±13 mmHg **41**±18 mmHg *P<0.001*

Debaty G et al - Circulation. 2023;148:A141-A141

Not for all patients but useful in special circonstances

Needed for:

- Transport with ongoing CPR
- Bridge to ECPR
- Organ donation

