

Endotoxin translocation during ischiemia-reperfusion (*in cardiogenic shock*): Is there a role for adsorptive technology?

> Maxime Nguyen Dijon University Hospital

Conflicts of interest

- Baxter Direct payement / Research grant
- Fresenius Formation fee
- Pfizer Congres fee

What are translocation and endotoxemia?

Endotoxin, Gram negative bacteria, PAMPs

Beutler, B., & Rietschel, E. T. (2003). Innate immune sensing and its roots: the story of endotoxin. Nature reviews immunology, 3(2), 169-176.

Gut Barrier

Journal of Endocrinology, 248(2), R67-R82.

Ischiemia reperfusion is a major agression factor

Annals of Gastroenterology: Quarterly Publication of the Hellenic Society of Gastroenterology, 28(3), 309.

Cardiogenic shock gut injury and mortality

90 patients acute heart failure or cardigenic shock

Kastl, S. P., Krychtiuk, K. A., Lenz, M., Distelmaier, K., Goliasch, G., Huber, K., ... & Speidl, W. S. (2019). Intestinal fatty acid binding protein is associated with mortality in patients with acute heart failure or cardiogenic shock. *Shock*, *51*(4), 410-415.

Ecmo is associated with gut injury

Lab Invest 94, 150–160 (2014)

Why does translocation matters in cardiogenic shock?

Inflammation is central in the pathogenesis of cardiogenic shock

Lu, Y. C., Yeh, W. C., & Ohashi, P. S. (2008). LPS/TLR4 signal transduction pathway. *Cytokine*, *4*2(2), 145-151. Jones, T. L., Nakamura, K., & McCabe, J. M. (2019). Cardiogenic shock: evolving definitions and future directions in management. *Open Heart*, *6*(1), e000960.

Gut injury leads to translocation in cardiogenic shock

European Heart Journal Acute Cardiovascular Care, 11(4), 356-365

Prospective observationnal study 54 ECMO (VA and VV), evaluation of endotoxin activity

	VV-ECMO (<i>n</i> = 15)	VA-ECMO (<i>n</i> = 39)
ECMO indication		
E-CPR	-	16
Heart failure	-	17
Postcardiotomy	-	4
Septic shock	-	2
ARDS	15	-
EAA level		
T1 median (IQR)	0.44 (0.31–0.71)	0.33 (0.22–0.50)
T2 median (IQR)	0.50 (0.36–0.66)	0.38 (0.28–0.52)
T3 median (IQR)	0.50 (0.33–0.78)	0.40 (0.23–0.57)
T4 median (IQR)	0.49 (0.37–0.59)	0.44 (0.29–0.56)
ECMO free days ^a	0 (0–17)	14 (0–24)
ICU free days ^b	0	0 (0–2)
30-day survival, <i>n</i> (%)	11 (73%)	21 (54%)

High EAA level (≥ 0.6) 9% VA-ECMO

Endotoxemia => Lower survival

Front. Med 2021 8:772413.

Should we remove endotoxin in cardiogenic shock?

Rational for extracorporeal endotoxin removal

Available blood purification devices for endotoxin

RESEARCH

Open Access

In vitro comparison of the adsorption of inflammatory mediators by blood purification devices

Benjamin Malard^{1*}, Corine Lambert¹ and John A. Kellum²

Fig. 2 LPS removal with oXiris, Toraymyxin, and CytoSorb. a LPS removal rate at t120 min. b LPS me adsorption clearance over 30 min. *Abbreviations: LPS* lipopolysaccharide, *N.S.* not significant

Early use of polymyxin B hemoperfusion in patients with septic shock due to peritonitis: a multicenter randomized control trial

> Early Use of Polymyxin B Hemoperfusion in Abdominal Septic Shock The EUPHAS Randomized Controlled Trial

> > Effect of Targeted Polymyxin B Hemoperfusion on 28-Day Mortality in Patients With Septic Shock and Elevated Endotoxin Level The EUPHRATES Randomized Clinical Trial

Existing rationnal	
Little data	
=> Need to provide evidence	

Unanswered questions and challenges

Naidu, S. S., Baran, D. A., Jentzer, J. C., Hollenberg, S. M., van Diepen, S., Basir, M. B., ... & Henry, T. D. (2022). SCAI SHOCK Stage Classification Expert Consensus Update: A Review and Incorporation of Validation Studies. *Journal of the American College of Cardiology*, 79(9), 933-946.

Prospective observationnal study 54 ECMO (VA and VV), evaluation of endotoxin activity

	VV-ECMO (<i>n</i> = 15)	VA-ECMO (<i>n</i> = 39)
ECMO indication		
E-CPR	-	16
Heart failure	-	17
Postcardiotomy	-	4
Septic shock	-	2
ARDS	15	-
EAA level		
T1 median (IQR)	0.44 (0.31–0.71)	0.33 (0.22–0.50)
T2 median (IQR)	0.50 (0.36–0.66)	0.38 (0.28–0.52)
T3 median (IQR)	0.50 (0.33–0.78)	0.40 (0.23–0.57)
T4 median (IQR)	0.49 (0.37–0.59)	0.44 (0.29–0.56)
ECMO free days ^a	0 (0–17)	14 (0–24)
ICU free days ^b	0	0 (0–2)
30-day survival, <i>n</i> (%)	11 (73%)	21 (54%)

Translocation?	
nactivation?	

High EAA level (≥ 0.6) 9% VA-ECMO

Front. Med 2021 8:772413.

Timing/ dose matters?

Polymyxin B hemoperfusion in endotoxemic septic shock patients without extreme endotoxemia: a post hoc analysis of the EUPHRATES trial

Significant contribution of endotoxemia to inflammation?

Bain, C. R., Myles, P. S., Corcoran, T., & Diele Ki, K. K., Millar, J. E., Langguth, D., Passmore, M. R., McDonald, C. I., Shekar, K., ... & Fraser, J. F. (2021).

Current understanding of leukocyte phenotypic and functional modulation during extracorporeal membrane oxygenation: a narrative review. *Frontiers in immunology*, *11*, 600684. man, J. M. (2023). Postoperative systemic inflammatory dysregulation and corticosteroids: a narrative review. *Anaesthesia*, *78*(3), 356-370.

Contribution of endotoxin removal to immune homeostasis?

REVIEW

Open Access

Check for updates

Extending the 'host response' paradigm from sepsis to cardiogenic shock: evidence, limitations and opportunities

Marie Buckel^{1†}, Patrick Maclean^{2†}, Julian C. Knight^{2,3}, Patrick R. Lawler^{4,5} and Alastair G. Proudfoot^{1,6*}

1/ Identify population

Endotoxemia (#target)

Timing / dose

Competition with endogenous systems

Significant contribution to SIRS

Immunity (#endotypes?)

2/ Devellop enrichement strategies

3/ Implement the intervention

4/ Monitor the intervention

« One does not fit them all »

Antman, E. M., & Loscalzo, J. (2016). Precision medicine in cardiology. Nature Reviews Cardiology, 13(10), 591-602.