

Facilitative weaning with less restrictive criteria in VVECMO

Paul Masi

ICU, Henri Mondor Hospital, Créteil, FRANCE

Conflicts of interest

No conflict of interest

Outline

Randomized trials in VV ECMO

Randomized trials in VV ECMO weaning

How do we approch weaning from VV ECMO?

Practice for weaning ECMO

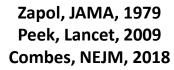
State of art and expert opinions

Factors associated for failed weaning of VV ECMO

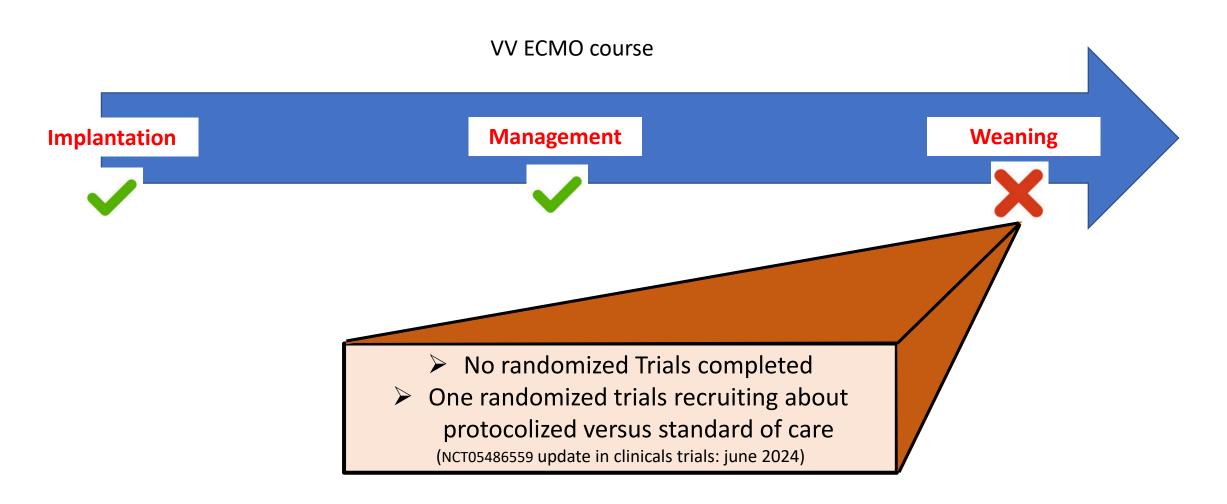
Others approach than weaning ECMO before mechanical ventilation

Facilitative weaning for specific population

Randomized trials in VV ECMO



Aubron, CCM, 2019
Panigada, CCM, 2020
ECMO PT, ICM, 2020
Supady, Lancet Resp Med, 2021
Guervilly, Critical care, 2022
Schmidt, JAMA, 2023



ECMO liberation ?

Randomized trials in VV ECMO

How do we approch weaning from VV ECMO?

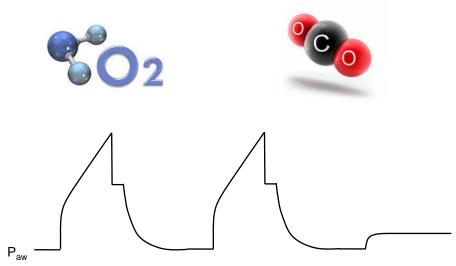
Lung recovery defined:

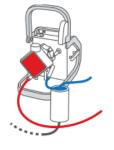
- Better respiratory system compliance
- Better oxygenation
- Better PCO2 clearance

A sweep gaz off trial

With low risk of ventilator-induced lung injury

Heteregenous practice

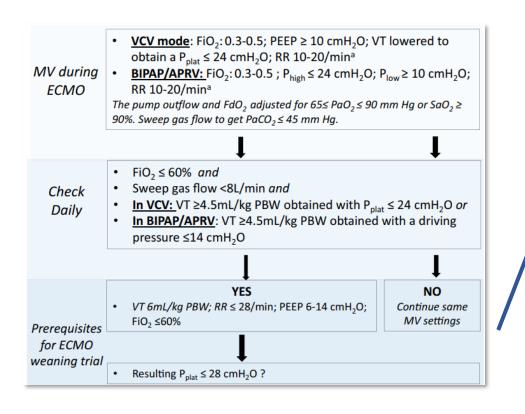

ECMO weaning process:

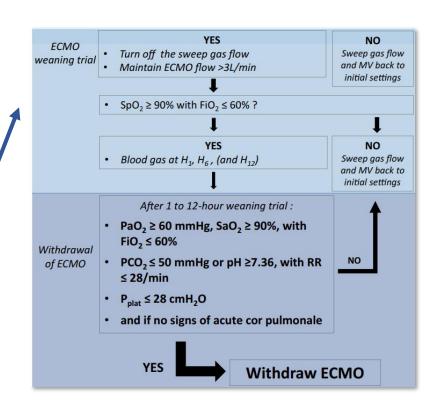

When?

- PaO2 PCO2
- PEEP
- Respiratory system compliance
- FIO2
- Low Gaz flow
- Low ECMO blood flow
- Importance of dead space ventilation

How?

- Stopping gaz flow duration
- Protocolized or clinician's discretion

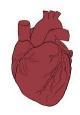



Ricardo Teijeiro-Paradis, CCM, 2023

State of art and expert opinions

Combes ICM 2020

Factors associated for failed weaning of VV ECMO



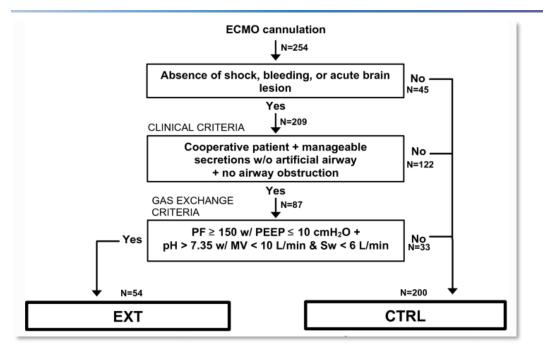
Tidal Volum
Driving pressure
Plateau pressure

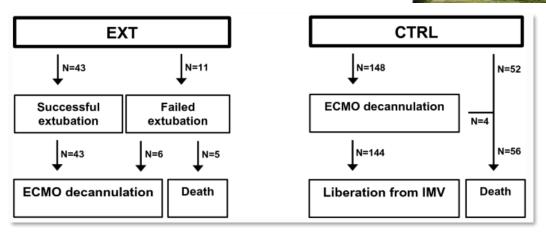
Respiratory rate
P 0.1
Ventilation minute
Respiratory drive

P/F

dioxide pressure (PET_{CO2})/Pa_{CO2} ratio Lung dead space Ventilatory ratio

End-tidal partial carbon


Heart rate

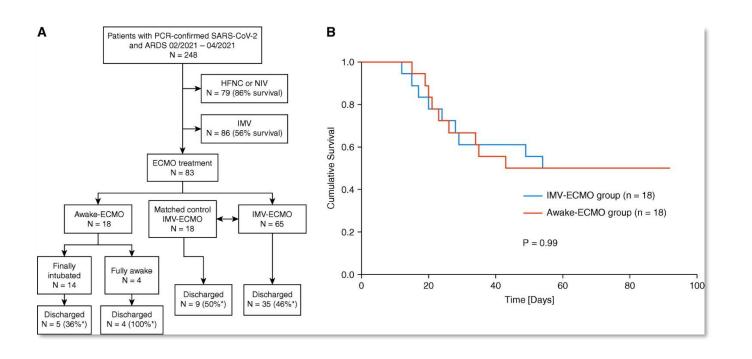

Ricardo Teijeiro-Paradis, ICM, 2021 Al-Fares, Chest, 2021 Lazzari, AJRCCM, 2022 Hartley, perfusion, 2020 Ricardo Teijeiro-Paradis, ICM, 2021 Lazzari, AJRCCM, 2022 Hartley, perfusion, 2020 Ricardo Teijeiro-Paradis, ICM, 2021 Al-Fares, Chest, 2021

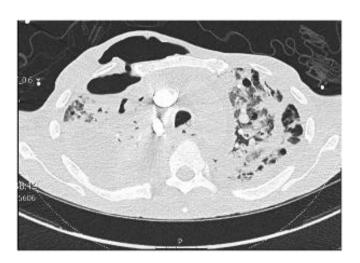
But did we have to wean VV ECMO before mechanical ventilation?

Feasible, but with 20% incidence of failed extubation.

Mostly used as a bridge to lung transplantation? Preferred single access dual stage right atrium to pulmonary artery cannula?

	Intubated Patients	Non-Intubated Patients
Oxygenation*	■ FiO ₂ consistently \leq 60% ■ PEEP \leq 10 cmH ₂ O ■ P _a O ₂ \geq 70 mmHg	■ $P_nO_2 \ge 70$ mmHg on no more than a moderate amount of supplemental O_2 (example: ≤ 6 LPM NC or facemask, or ≤ 40 LPM with $F_iO_2 \le 0.3$ on high flow nasal cannula)
Ventilation	■ Tidal volume ≤ 6mL/kg PBW ■ Plateau pressure ≤ 28 cmH ₂ O ■ Respiratory rate ≤ 28 bpm ■ ABG demonstrates acceptable pH and P _a CO ₂ based on the patient's clinical condition without excessive work of breathing	■ ABG demonstrates acceptable pH based on the patient's clinical condition without excessive work of breathing
Imaging	Chest radiograph demonstrates improvement in appearance	




Roncon-albuquerque, AIC, 2023 Biscotti, Ann thorac Surg, 2017 Mustapha, JAMA surg, 2020 Tonna, ASAIO, 2021

ECMO without IMV?

Between 40 to 70% of ECMO awake strategy failures.

Useful for avoiding or worsening barotrauma? For immunocompromised patients?

Mang, AJRCCM, 2022 Alessandro, CCM, 2023 Correa, Respir Med Case Rep, 2021

Timing of VV ECMO weaning: as soon as possible?

Benefice:

Duration of ECMO
ECMO-related complication
Oxygenator dysfonction
Cost

Risk:

Recannulation
Injurious mechanical ventilation
Ventilator induced lung injury

As soon as possible or when complications occur?

Facilitative weaning protocol

Short and long-term outcomes of patients with COVID-19-associated acute respiratory distress syndrome and difficult veno-venous-ECMO weaning


Paul Masi^{1,2†}, Samuel Tuffet^{1,2†}, Laurent Boyer^{3,4}, Thierry Folliguet^{5,6}, Armand Mekontso Dessap^{1,2} and Nicolas de Prost^{1,2*}

Inclusion criterias:

- Prolonged support of ECMO (> 10 days)
- Serious ECMO complication
- Patients who haved recovery a satisfactory native lung oxygenation
- Unsuccessful weaning test (EOLIA criteria)

facilitative weaning VS conventional weaning

Patients' characteristics

Parameters	Facilitative weaning (n = 18)	Conventional weaning ($n=16$)	P value
Age, years	53 (45–57)	50 (44–58)	0.92
Male gender (%)	11 (61)	11 (69)	0.70
SAPS 2 score	35 (27–54)	35 (29–50)	0.98
BMI, kg/m ² Corticosteroids during ICU stay	29.1 (26.1–31.9)	34.5 (26.10–35.8)	0.40
Dexamethasone	11 (61)	9 (56)	> 0.99
Hydrocortisone/Fludrocortisone	8 (44)	4 (33)	0.30
Methylprednisolone pulse therapy	2 (11)	1 (6)	>0.99
Renal replacement therapy	7 (39)	5 (31)	0.73
Ventilator-associated pneumonia	17 (94)	10 (63)	0.030
Major bleeding ^c	13 (72)	4 (25)	0.015
ECMO support duration, days	24 (16–43)	10 (7–14)	< 0.001

Facilitative weaning, ECMO complications:

Masi, critical care, 2021

Major bleeding 13 patients

CRI 2 patients

Severe hemolysis 2 patients


Patients' characteristics

Scissural distortion

Parameters	Facilitative weaning ($n=18$)	Conventional weaning ($n = 16$)	P value
Ventilator settings during ECMO weaning			
Tidal Volume, mL/kg PBW	5.6 (4.8–5.9)	5.8 (5.5–6.1)	0.20
Respiratory rate, breaths/min	34 (30–38)	29 (26–32)	0.002
Plateau pressure, cmH ₂ O	31 (29–34)	25 (22–26)	< 0.00
Driving pressure, cmH ₂ O	24 (22–27)	13 (12–16)	< 0.00
RS compliance, mL/cmH ₂ O	14 (12–17)	27 (22–35)	< 0.00
PEEP, cmH ₂ O	5 (5–8)	10 (7–12)	0.003
Arterial blood gases during weaning			
pH	7.35 (7.27-7.38)	7.42 (7.36-7.44)	0.008
PaCO ₂ , mmHg	47 (42–55)	41 (37-44)	0.001
PaO ₂ /FiO ₂ ratio, mmHg	166 (145–202)	200 (156–254)	0.25
Chest CT-scan at time of weaning ^e			
Reticular pattern	3 (21)	1 (8)	0.60
Ground glass opacity	11 (78)	12 (100)	0.13
Alveolar condensation	12 (86)	9 (75)	0.53
Traction bronchiectasis	12 (86)	5 (12)	0.038
Tracheal distorsion	1 (7)	0 (0)	> 0.99

Masi, critical care, 2021

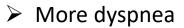
0.59

2 (16)

4 (29)

Consequences of facilitative weaning?

Parameters	Facilitative weaning (n = 18)	Conventional weaning (n = 16)	P value
Rescue therapy after weaning			
Prone positioning	9 (50)	1 (6)	0.008
Inhaled nitric oxide	4 (22)	1 (6)	0.34
Methylprednisolone pulse therapy	1 (5)	0 (0)	-
RS mechanics on the day of MV weaning			
Pressure support level, cm H ₂ O	11 (8–14)	10 (8–13)	0.60
Tidal volume, mL	520 (411–609)	471 (397–622)	0.75
Tidal volume, mL/kg PBW	7.2 (6.3–8.4)	7.0 (5.9–8.7)	0.98
Compliance ^g , mL/cmH ₂ O	44.7 (35.2–62.4)	48.9 (34.1–77.8)	0.78
Total MV duration, days	55 (38–86) ⁿ	21 (14–31)	0.0002
MV duration after ECMO weaning, days	26 (16–36) ^h	5 (3–12)	< 0.0001
ICU length of stay, days	55 (40–91) ^h	27 (19–32)	< 0.0001
In-ICU mortality	2 (13) ^h	1 (6)	0.60



In long term?

	Facilitative weaning (n=6)	Conventional weaning (n=7)	P value
Pulmonary hypertension ^a	0 (0)	0 (0)	_
Pulmonary function tests			
K _{CO} , % predicted	88 (75-100)	104 (88–111)	0.11
DL _{CO} , % predicted	57 (44–73)	70 (57–72)	0.29
FVC % predicted	77 (59–85)	82 (52-91)	0.92
TLC, % predicted	75 (65–79)	77 (64–94)	0.70
Chest CT-scan at long-term			
Reticular pattern	1 (12)	1 (14)	> 0.99
Ground glass opacity	5 (71)	4 (50)	0.60
Alveolar condensation	0 (0)	1 (12.5)	>0.99
Tractionbronchiectasis	4 (57)	4 (50)	> 0.99
Tracheal traction	0 (0)	0 (0)	_
Scissural distortion	2 (29)	1 (13)	0.57
6-min walking test			
Walked distance, m	433 (348-503)	506 (480-548)	80.0
% of predicted distance, %	67 (62-74)	90 (78–97)	0.009
Room air saturation	97 (96-98)	98 (96-98)	0.82
Dyspnea (MRC scale)			0.07
0	0 (0)	4 (57)	
1 or 2	6 (100)	3 (43)	

Equivalent in the entire cohort (in a second analysis)

¹ ALE

^aAssessed by transthoracic echocardiography; KCO CO transfer coefficient; D_{LCO} haemoglobin value (Hb) corrected diffusion capacity with CO; FVC forced expiratory vital capacity; TLC total lung capacity

Conclusion

- Weaning ECMO with less restrictive criteria is feasible and safe
- In a specific population (oxygenation improvement with fibrosis evolution)
- Useful when ECMO complications occurred
- Small cohort
- Need to be confirmed in a larger population